6,689 research outputs found

    Modeling and Simulation in Engineering

    Get PDF
    This book provides an open platform to establish and share knowledge developed by scholars, scientists, and engineers from all over the world, about various applications of the modeling and simulation in the design process of products, in various engineering fields. The book consists of 12 chapters arranged in two sections (3D Modeling and Virtual Prototyping), reflecting the multidimensionality of applications related to modeling and simulation. Some of the most recent modeling and simulation techniques, as well as some of the most accurate and sophisticated software in treating complex systems, are applied. All the original contributions in this book are jointed by the basic principle of a successful modeling and simulation process: as complex as necessary, and as simple as possible. The idea is to manipulate the simplifying assumptions in a way that reduces the complexity of the model (in order to make a real-time simulation), but without altering the precision of the results

    Digital design of medical replicas via desktop systems: shape evaluation of colon parts

    Get PDF
    In this paper, we aim at providing results concerning the application of desktop systems for rapid prototyping of medical replicas that involve complex shapes, as, for example, folds of a colon. Medical replicas may assist preoperative planning or tutoring in surgery to better understand the interaction among pathology and organs. Major goals of the paper concern with guiding the digital design workflow of the replicas and understanding their final performance, according to the requirements asked by the medics (shape accuracy, capability of seeing both inner and outer details, and support and possible interfacing with other organs). In particular, after the analysis of these requirements, we apply digital design for colon replicas, adopting two desktop systems. ,e experimental results confirm that the proposed preprocessing strategy is able to conduct to the manufacturing of colon replicas divided in self-supporting segments, minimizing the supports during printing. ,is allows also to reach an acceptable level of final quality, according to the request of having a 3D presurgery overview of the problems. ,ese replicas are compared through reverse engineering acquisitions made by a structured-light system, to assess the achieved shape and dimensional accuracy. Final results demonstrate that low-cost desktop systems, coupled with proper strategy of preprocessing, may have shape deviation in the range of ±1 mm, good for physical manipulations during medical diagnosis and explanation

    Optimization and visualization of rapid prototyping process parameters.

    Get PDF
    The optimal selection of rapid prototyping (RP) process parameters is a great concern to RP designers. When dealing with this problem, different build objectives have to be taken into consideration. Using virtual rapid prototyping (VRP) systems as a visualization tool to verify the optimally selected process parameters will assist designers in taking critical decisions regarding modeling of prototypes. This will lead to substantial improvements in part accuracy using minimal number of iterations, and no physical fabrication until confident enough to do so. The purpose of this thesis is to demonstrate that virtual validation of optimally selected process parameters can significantly reduce time and effort spent on traditional RP experimentation. To achieve the goal of this thesis, a multi-objective optimization technique is proposed and a model is generated taking into consideration different build objectives, which are surface roughness, support structure volume, build time and dimensional accuracy. The multi-objective method used is the weighted sum method, where a single utility function has been formulated, which combines all the objective functions together. The orders of magnitudes have been normalized, and finally weights have been assigned for each objective function in order to create the general formulation. (Abstract shortened by UMI.)Dept. of Industrial and Manufacturing Systems Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2004 .E47. Source: Masters Abstracts International, Volume: 43-03, page: 0959. Adviser: Waguih ElMaraghy. Thesis (M.A.Sc.)--University of Windsor (Canada), 2004

    Sketchy rendering for information visualization

    Get PDF
    We present and evaluate a framework for constructing sketchy style information visualizations that mimic data graphics drawn by hand. We provide an alternative renderer for the Processing graphics environment that redefines core drawing primitives including line, polygon and ellipse rendering. These primitives allow higher-level graphical features such as bar charts, line charts, treemaps and node-link diagrams to be drawn in a sketchy style with a specified degree of sketchiness. The framework is designed to be easily integrated into existing visualization implementations with minimal programming modification or design effort. We show examples of use for statistical graphics, conveying spatial imprecision and for enhancing aesthetic and narrative qualities of visual- ization. We evaluate user perception of sketchiness of areal features through a series of stimulus-response tests in order to assess users’ ability to place sketchiness on a ratio scale, and to estimate area. Results suggest relative area judgment is compromised by sketchy rendering and that its influence is dependent on the shape being rendered. They show that degree of sketchiness may be judged on an ordinal scale but that its judgement varies strongly between individuals. We evaluate higher-level impacts of sketchiness through user testing of scenarios that encourage user engagement with data visualization and willingness to critique visualization de- sign. Results suggest that where a visualization is clearly sketchy, engagement may be increased and that attitudes to participating in visualization annotation are more positive. The results of our work have implications for effective information visualization design that go beyond the traditional role of sketching as a tool for prototyping or its use for an indication of general uncertainty

    Tangible user interfaces : past, present and future directions

    Get PDF
    In the last two decades, Tangible User Interfaces (TUIs) have emerged as a new interface type that interlinks the digital and physical worlds. Drawing upon users' knowledge and skills of interaction with the real non-digital world, TUIs show a potential to enhance the way in which people interact with and leverage digital information. However, TUI research is still in its infancy and extensive research is required in or- der to fully understand the implications of tangible user interfaces, to develop technologies that further bridge the digital and the physical, and to guide TUI design with empirical knowledge. This paper examines the existing body of work on Tangible User In- terfaces. We start by sketching the history of tangible user interfaces, examining the intellectual origins of this ïŹeld. We then present TUIs in a broader context, survey application domains, and review frame- works and taxonomies. We also discuss conceptual foundations of TUIs including perspectives from cognitive sciences, phycology, and philoso- phy. Methods and technologies for designing, building, and evaluating TUIs are also addressed. Finally, we discuss the strengths and limita- tions of TUIs and chart directions for future research

    A data exchange system in e-manufacturing.

    Get PDF
    The emergence of the Internet has fundamentally changed the way that people communicate and view the world. As a new manufacturing paradigm, e-Manufacturing is about using the web-enabled and tether-free infotronic technologies for manufacturing operations. Although e-Manufacturing has already been an often-mentioned topic, in the past decade, practical implementation has been slow to develop due to insufficient technologies to handle information flows connected with e-Manufacturing. Recently, there is considerable interest in the area of Internet enabled distributed systems. Examples of these works include online part measurement [Grimaldi, 1998] and Distributed Rapid Prototyping Via the Internet [Tay, 1999]. The research target of these works focus on remote manufacturing control and monitoring via the Internet. However, data exchange, an important part for global co-operation, hasn\u27t been fully studied and there is not a lot of work that has been done in previous research. In this thesis, efforts have been made to highlight the role of data exchange in Internet-enabled manufacturing, and, an Internet-based Data Exchange System has been developed with JSP and Oracle database. The developed system has advantage in commonality and capability of data-transaction over the previous work. As an interesting complement to the study of previous researches, a novel methodology is also proposed for utilization of remote resource via the Internet, using commercial software \u27PC Remote Access\u27. The implementation of this methodology has successfully been done to use software including AutoCAD, MasterCAM and Catalyst over the Internet. The biggest problem for the application of this approach lies in the fact that \u27PC remote Access\u27 software cannot make one PC get access to another PC which is behind a firewall. However the software supplier has announced that the problem will be addressed in the near future.Dept. of Industrial and Manufacturing Systems Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2003 .Z537. Source: Masters Abstracts International, Volume: 43-01, page: 0296. Adviser: Waghih Elmraghy. Thesis (M.A.Sc.)--University of Windsor (Canada), 2004

    Advanced Applications of Rapid Prototyping Technology in Modern Engineering

    Get PDF
    Rapid prototyping (RP) technology has been widely known and appreciated due to its flexible and customized manufacturing capabilities. The widely studied RP techniques include stereolithography apparatus (SLA), selective laser sintering (SLS), three-dimensional printing (3DP), fused deposition modeling (FDM), 3D plotting, solid ground curing (SGC), multiphase jet solidification (MJS), laminated object manufacturing (LOM). Different techniques are associated with different materials and/or processing principles and thus are devoted to specific applications. RP technology has no longer been only for prototype building rather has been extended for real industrial manufacturing solutions. Today, the RP technology has contributed to almost all engineering areas that include mechanical, materials, industrial, aerospace, electrical and most recently biomedical engineering. This book aims to present the advanced development of RP technologies in various engineering areas as the solutions to the real world engineering problems

    Development of a design feature database to support design for additive manufacturing (DfAM)

    Get PDF
    This research introduces a method to aid the design of products or parts to be made using Additive Manufacturing (AM), particularly the laser sintering (LS) system. The research began with a literature review that encompassed the subjects of design and AM and through this the need for an assistive design approach for AM was identified. Undertaking the literature review also confirmed that little has been done in the area of supporting the design of AM parts or products. Preliminary investigations were conducted to identify the design factors to consider for AM. Two preliminary investigations were conducted, the first investigation was conducted to identify the reasons for designing for AM, the need for a design support tool for AM and current challenges of student industrial designers designing parts or products for AM, and also to identify the type of design support they required. Further investigation were conducted to examine how AM products are developed by professional industrial designers and to understand their design processes and procedures. The study has identified specific AM enabled design features that the designers have been able to create within their case study products. Detailed observation of the case study products and parts reveals a number of features that are only economical or possible to produce with AM. A taxonomy of AM enabled design features was developed as a precursor for the development of a computer based design tool. The AM enabled design features was defined as a features that would be uneconomical or very expensive to be produced with conventional methods. The taxonomy has four top-level taxons based on four main reasons for using AM, namely user fit requirements, improved product functionality requirements, parts consolidation requirements and improvement of aesthetics or form requirements. Each of these requirements was expanded further into thirteen sub categories of applications that contained 106 examples of design features that are only possible to manufacture using AM technology. The collected and grouped design features were presented in a form of a database as a method to aid product design of parts or products for AM. A series of user trials were conducted that showed the database enabled industrial designers to visualise and gather design feature information that could be incorporated into their own design work. Finally, conclusions are drawn and suggestions for future work are listed. In summary, it can be concluded that this research project has been a success, having addressed all of the objectives that were identified at its outset. From the user trial results, it is clear to see that the proposed tool would be an effective tool to support product design for AM, particularly from an educational perspective. The tool was found to be beneficial to student designers to take advantage of the design freedom offered by AM in order to produce improved product design. As AM becomes more widely used, it is anticipated that new design features will emerge that could be included in future versions of the database so that it will remain a rich source of inspirational information for tomorrow s industrial designers

    Interaktion mit Medienfassaden : Design und Implementierung interaktiver Systeme fĂŒr große urbane Displays

    Get PDF
    Media facades are a prominent example of the digital augmentation of urban spaces. They denote the concept of turning the surface of a building into a large-scale urban screen. Due to their enormous size, they require interaction at a distance and they have a high level of visibility. Additionally, they are situated in a highly dynamic urban environment with rapidly changing conditions, which results in settings that are neither comparable, nor reproducible. Altogether, this makes the development of interactive media facade installations a challenging task. This thesis investigates the design of interactive installations for media facades holistically. A theoretical analysis of the design space for interactive installations for media facades is conducted to derive taxonomies to put media facade installations into context. Along with this, a set of observations and guidelines is provided to derive properties of the interaction from the technical characteristics of an interactive media facade installation. This thesis further provides three novel interaction techniques addressing the form factor and resolution of the facade, without the need for additionally instrumenting the space around the facades. The thesis contributes to the design of interactive media facade installations by providing a generalized media facade toolkit for rapid prototyping and simulating interactive media facade installations, independent of the media facade’s size, form factor, technology and underlying hardware.Die wachsende Zahl an Medienfassenden ist ein eindrucksvolles Beispiel fĂŒr die digitale Erweiterung des öffentlichen Raums. Medienfassaden beschreiben die Möglichkeit, die OberflĂ€che eines GebĂ€udes in ein digitales Display zu wandeln. Ihre GrĂ¶ĂŸe erfordert Interaktion aus einer gewissen Distanz und fĂŒhrt zu einer großen Sichtbarkeit der dargestellten Inhalte. Medienfassaden-Installationen sind bedingt durch ihre dynamische Umgebung nur schwerlich vergleich- und reproduzierbar. All dies macht die Entwicklung von Installationen fĂŒr Medienfassaden zu einer großen Herausforderung. Diese Arbeit beschĂ€ftigt sich mit der Entwicklung interaktiver Installationen fĂŒr Medienfassaden. Es wird eine theoretische Analyse des Design-Spaces interaktiver Medienfassaden-Installationen durchgefĂŒhrt und es werden Taxonomien entwickelt, die Medienfassaden-Installationen in Bezug zueinander setzen. In diesem Zusammenhang werden ausgehend von den technischen Charakteristika Eigenschaften der Interaktion erarbeitet. Zur Interaktion mit Medienfassaden werden drei neue Interaktionstechniken vorgestellt, die Form und Auflösung der Fassade berĂŒcksichtigen, ohne notwendigerweise die Umgebung der Fassade zu instrumentieren. Die Ergebnisse dieser Arbeit verbessern darĂŒber hinaus die Entwicklung von Installationen fĂŒr Medienfassaden, indem ein einheitliches Medienfassaden-Toolkit zum Rapid-Prototyping und zur Simulation interaktiver Installationen vorgestellt wird, das unabhĂ€ngig von GrĂ¶ĂŸe und Form der Medienfassade sowie unabhĂ€ngig von der verwendeten Technologie und der zugrunde liegenden Hardware ist

    Fast, Scalable, and Interactive Software for Landau-de Gennes Numerical Modeling of Nematic Topological Defects

    Get PDF
    Numerical modeling of nematic liquid crystals using the tensorial Landau-de Gennes (LdG) theory provides detailed insights into the structure and energetics of the enormous variety of possible topological defect configurations that may arise when the liquid crystal is in contact with colloidal inclusions or structured boundaries. However, these methods can be computationally expensive, making it challenging to predict (meta)stable configurations involving several colloidal particles, and they are often restricted to system sizes well below the experimental scale. Here we present an open-source software package that exploits the embarrassingly parallel structure of the lattice discretization of the LdG approach. Our implementation, combining CUDA/C++ and OpenMPI, allows users to accelerate simulations using both CPU and GPU resources in either single- or multiple-core configurations. We make use of an efficient minimization algorithm, the Fast Inertial Relaxation Engine (FIRE) method, that is well-suited to large-scale parallelization, requiring little additional memory or computational cost while offering performance competitive with other commonly used methods. In multi-core operation we are able to scale simulations up to supra-micron length scales of experimental relevance, and in single-core operation the simulation package includes a user-friendly GUI environment for rapid prototyping of interfacial features and the multifarious defect states they can promote. To demonstrate this software package, we examine in detail the competition between curvilinear disclinations and point-like hedgehog defects as size scale, material properties, and geometric features are varied. We also study the effects of an interface patterned with an array of topological point-defects.Comment: 16 pages, 6 figures, 1 youtube link. The full catastroph
    • 

    corecore