7,740 research outputs found

    Identification of Design Principles

    Get PDF
    This report identifies those design principles for a (possibly new) query and transformation language for the Web supporting inference that are considered essential. Based upon these design principles an initial strawman is selected. Scenarios for querying the Semantic Web illustrate the design principles and their reflection in the initial strawman, i.e., a first draft of the query language to be designed and implemented by the REWERSE working group I4

    Web and Semantic Web Query Languages

    Get PDF
    A number of techniques have been developed to facilitate powerful data retrieval on the Web and Semantic Web. Three categories of Web query languages can be distinguished, according to the format of the data they can retrieve: XML, RDF and Topic Maps. This article introduces the spectrum of languages falling into these categories and summarises their salient aspects. The languages are introduced using common sample data and query types. Key aspects of the query languages considered are stressed in a conclusion

    Survey over Existing Query and Transformation Languages

    Get PDF
    A widely acknowledged obstacle for realizing the vision of the Semantic Web is the inability of many current Semantic Web approaches to cope with data available in such diverging representation formalisms as XML, RDF, or Topic Maps. A common query language is the first step to allow transparent access to data in any of these formats. To further the understanding of the requirements and approaches proposed for query languages in the conventional as well as the Semantic Web, this report surveys a large number of query languages for accessing XML, RDF, or Topic Maps. This is the first systematic survey to consider query languages from all these areas. From the detailed survey of these query languages, a common classification scheme is derived that is useful for understanding and differentiating languages within and among all three areas

    Reactive Rules for Emergency Management

    Get PDF
    The goal of the following survey on Event-Condition-Action (ECA) Rules is to come to a common understanding and intuition on this topic within EMILI. Thus it does not give an academic overview on Event-Condition-Action Rules which would be valuable for computer scientists only. Instead the survey tries to introduce Event-Condition-Action Rules and their use for emergency management based on real-life examples from the use-cases identified in Deliverable 3.1. In this way we hope to address both, computer scientists and security experts, by showing how the Event-Condition-Action Rule technology can help to solve security issues in emergency management. The survey incorporates information from other work packages, particularly from Deliverable D3.1 and its Annexes, D4.1, D2.1 and D6.2 wherever possible

    Declarative Ajax Web Applications through SQL++ on a Unified Application State

    Full text link
    Implementing even a conceptually simple web application requires an inordinate amount of time. FORWARD addresses three problems that reduce developer productivity: (a) Impedance mismatch across the multiple languages used at different tiers of the application architecture. (b) Distributed data access across the multiple data sources of the application (SQL database, user input of the browser page, session data in the application server, etc). (c) Asynchronous, incremental modification of the pages, as performed by Ajax actions. FORWARD belongs to a novel family of web application frameworks that attack impedance mismatch by offering a single unifying language. FORWARD's language is SQL++, a minimally extended SQL. FORWARD's architecture is based on two novel cornerstones: (a) A Unified Application State (UAS), which is a virtual database over the multiple data sources. The UAS is accessed via distributed SQL++ queries, therefore resolving the distributed data access problem. (b) Declarative page specifications, which treat the data displayed by pages as rendered SQL++ page queries. The resulting pages are automatically incrementally modified by FORWARD. User input on the page becomes part of the UAS. We show that SQL++ captures the semi-structured nature of web pages and subsumes the data models of two important data sources of the UAS: SQL databases and JavaScript components. We show that simple markup is sufficient for creating Ajax displays and for modeling user input on the page as UAS data sources. Finally, we discuss the page specification syntax and semantics that are needed in order to avoid race conditions and conflicts between the user input and the automated Ajax page modifications. FORWARD has been used in the development of eight commercial and academic applications. An alpha-release web-based IDE (itself built in FORWARD) enables development in the cloud.Comment: Proceedings of the 14th International Symposium on Database Programming Languages (DBPL 2013), August 30, 2013, Riva del Garda, Trento, Ital

    Programming in logic without logic programming

    Get PDF
    In previous work, we proposed a logic-based framework in which computation is the execution of actions in an attempt to make reactive rules of the form if antecedent then consequent true in a canonical model of a logic program determined by an initial state, sequence of events, and the resulting sequence of subsequent states. In this model-theoretic semantics, reactive rules are the driving force, and logic programs play only a supporting role. In the canonical model, states, actions and other events are represented with timestamps. But in the operational semantics, for the sake of efficiency, timestamps are omitted and only the current state is maintained. State transitions are performed reactively by executing actions to make the consequents of rules true whenever the antecedents become true. This operational semantics is sound, but incomplete. It cannot make reactive rules true by preventing their antecedents from becoming true, or by proactively making their consequents true before their antecedents become true. In this paper, we characterize the notion of reactive model, and prove that the operational semantics can generate all and only such models. In order to focus on the main issues, we omit the logic programming component of the framework.Comment: Under consideration in Theory and Practice of Logic Programming (TPLP
    corecore