8,045 research outputs found

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    Sensor System for Rescue Robots

    Get PDF
    A majority of rescue worker fatalities are a result of on-scene responses. Existing technologies help assist the first responders in scenarios of no light, and there even exist robots that can navigate radioactive areas. However, none are able to be both quickly deployable and enter hard to reach or unsafe areas in an emergency event such as an earthquake or storm that damages a structure. In this project we created a sensor platform system to augment existing robotic solutions so that rescue workers can search for people in danger while avoiding preventable injury or death and saving time and resources. Our results showed that we were able to map out a 2D map of the room with updates for robot motion on a display while also showing a live thermal image in front of the system. The system is also capable of taking a digital picture from a triggering event and then displaying it on the computer screen. We discovered that data transfer plays a huge role in making different programs like Arduino and Processing interact with each other. Consequently, this needs to be accounted for when improving our project. In particular our project is wired right now but should deliver data wirelessly to be of any practical use. Furthermore, we dipped our feet into SLAM technologies and if our project were to become autonomous, more research into the algorithms would make this autonomy feasible

    Generative adversarial networks review in earthquake-related engineering fields

    Get PDF
    Within seismology, geology, civil and structural engineering, deep learning (DL), especially via generative adversarial networks (GANs), represents an innovative, engaging, and advantageous way to generate reliable synthetic data that represent actual samples' characteristics, providing a handy data augmentation tool. Indeed, in many practical applications, obtaining a significant number of high-quality information is demanding. Data augmentation is generally based on artificial intelligence (AI) and machine learning data-driven models. The DL GAN-based data augmentation approach for generating synthetic seismic signals revolutionized the current data augmentation paradigm. This study delivers a critical state-of-art review, explaining recent research into AI-based GAN synthetic generation of ground motion signals or seismic events, and also with a comprehensive insight into seismic-related geophysical studies. This study may be relevant, especially for the earth and planetary science, geology and seismology, oil and gas exploration, and on the other hand for assessing the seismic response of buildings and infrastructures, seismic detection tasks, and general structural and civil engineering applications. Furthermore, highlighting the strengths and limitations of the current studies on adversarial learning applied to seismology may help to guide research efforts in the next future toward the most promising directions

    Gazing at the Solar System: Capturing the Evolution of Dunes, Faults, Volcanoes, and Ice from Space

    Get PDF
    Gazing imaging holds promise for improved understanding of surface characteristics and processes of Earth and solar system bodies. Evolution of earthquake fault zones, migration of sand dunes, and retreat of ice masses can be understood by observing changing features over time. To gaze or stare means to look steadily, intently, and with fixed attention, offering the ability to probe the characteristics of a target deeply, allowing retrieval of 3D structure and changes on fine and coarse scales. Observing surface reflectance and 3D structure from multiple perspectives allows for a more complete view of a surface than conventional remote imaging. A gaze from low Earth orbit (LEO) could last several minutes allowing for video capture of dynamic processes. Repeat passes enable monitoring time scales of days to years. Numerous vantage points are available during a gaze (Figure 1). Features in the scene are projected into each image frame enabling the recovery of dense 3D structure. The recovery is robust to errors in the spacecraft position and attitude knowledge, because features are from different perspectives. The combination of a varying look angle and the solar illumination allows recovering texture and reflectance properties and permits the separation of atmospheric effects. Applications are numerous and diverse, including, for example, glacier and ice sheet flux, sand dune migration, geohazards from earthquakes, volcanoes, landslides, rivers and floods, animal migrations, ecosystem changes, geysers on Enceladus, or ice structure on Europa. The Keck Institute for Space Studies (KISS) hosted a workshop in June of 2014 to explore opportunities and challenges of gazing imaging. The goals of the workshop were to develop and discuss the broad scientific questions that can be addressed using spaceborne gazing, specific types of targets and applications, the resolution and spectral bands needed to achieve the science objectives, and possible instrument configurations for future missions. The workshop participants found that gazing imaging offers the ability to measure morphology, composition, and reflectance simultaneously and to measure their variability over time. Gazing imaging can be applied to better understand the consequences of climate change and natural hazards processes, through the study of continuous and episodic processes in both domains

    Simulating spatial and temporal evolution of multiple wing cracks around faults in crystalline basement rocks

    Get PDF
    Fault zones are structurally highly spatially heterogeneous and hence extremely complex. Observations of fluid flow through fault zones over several scales show that this structural complexity is reflected in the hydrogeological properties of faults. Information on faults at depth is scarce, hence, it is highly valuable to understand the controls on spatial and temporal fault zone development. In this paper we increase our understanding of fault damage zone development in crystalline rocks by dynamically simulating the growth of single and multiple splay fractures produced from failure on a pre-existing fault. We present a new simulation model, MOPEDZ (Modeling Of Permeability Evolution in the Damage Zone surrounding faults), that simulates fault evolution through solution of Navier's equation with a combined Mohr-Coulomb and tensile failure criteria. Simulations suggest that location, frequency, mode of failure and orientation of splay fractures are significantly affected both by the orientation of the fault with respect to the maximum principal compressive stress and the conditions of differential stress. Model predictions compare well with published field outcrop data, confirming that this model produces realistic damage zone geometries
    corecore