1,021 research outputs found

    Hand gesture based digit recognition

    Get PDF
    Recognition of static hand gestures in our daily plays an important role in human-computer interaction. Hand gesture recognition has been a challenging task now a days so a lot of research topic has been going on due to its increased demands in human computer interaction. Since Hand gestures have been the most natural communication medium among human being, so this facilitate efficient human computer interaction in many electronics gazettes . This has led us to take up this task of hand gesture recognition. In this project different hand gestures are recognized and no of fingers are counted. Recognition process involve steps like feature extraction, features reduction and classification. To make the recognition process robust against varying illumination we used lighting compensation method along with YCbCr model. Gabor filter has been used for feature extraction because of its special mathematical properties. Gabor based feature vectors have high dimension so in our project 15 local gabor filters are used instead of 40 Gabor filters. The objective in using fifteen Gabor filters is used to mitigate the complexity with improved accuracy. In this project the problem of high dimensionality of feature vector is being solved by using PCA. Using local Gabor filter helps in reduction of data redundancy as compared to that of 40 filters. Classification of the 5 different gestures is done with the use of one against all multiclass SVM which is also compared with Euclidean distance and cosine similarity while the former giving an accuracy of 90.86%

    Deep Learning for Electromyographic Hand Gesture Signal Classification Using Transfer Learning

    Get PDF
    In recent years, deep learning algorithms have become increasingly more prominent for their unparalleled ability to automatically learn discriminant features from large amounts of data. However, within the field of electromyography-based gesture recognition, deep learning algorithms are seldom employed as they require an unreasonable amount of effort from a single person, to generate tens of thousands of examples. This work's hypothesis is that general, informative features can be learned from the large amounts of data generated by aggregating the signals of multiple users, thus reducing the recording burden while enhancing gesture recognition. Consequently, this paper proposes applying transfer learning on aggregated data from multiple users, while leveraging the capacity of deep learning algorithms to learn discriminant features from large datasets. Two datasets comprised of 19 and 17 able-bodied participants respectively (the first one is employed for pre-training) were recorded for this work, using the Myo Armband. A third Myo Armband dataset was taken from the NinaPro database and is comprised of 10 able-bodied participants. Three different deep learning networks employing three different modalities as input (raw EMG, Spectrograms and Continuous Wavelet Transform (CWT)) are tested on the second and third dataset. The proposed transfer learning scheme is shown to systematically and significantly enhance the performance for all three networks on the two datasets, achieving an offline accuracy of 98.31% for 7 gestures over 17 participants for the CWT-based ConvNet and 68.98% for 18 gestures over 10 participants for the raw EMG-based ConvNet. Finally, a use-case study employing eight able-bodied participants suggests that real-time feedback allows users to adapt their muscle activation strategy which reduces the degradation in accuracy normally experienced over time.Comment: Source code and datasets available: https://github.com/Giguelingueling/MyoArmbandDatase

    Integration of Wavelet and Recurrence Quantification Analysis in Emotion Recognition of Bilinguals

    Get PDF
    Background: This study offers a robust framework for the classification of autonomic signals into five affective states during the picture viewing. To this end, the following emotion categories studied: five classes of the arousal-valence plane (5C), three classes of arousal (3A), and three categories of valence (3V). For the first time, the linguality information also incorporated into the recognition procedure. Precisely, the main objective of this paper was to present a fundamental approach for evaluating and classifying the emotions of monolingual and bilingual college students.Methods: Utilizing the nonlinear dynamics, the recurrence quantification measures of the wavelet coefficients extracted. To optimize the feature space, different feature selection approaches, including generalized discriminant analysis (GDA), principal component analysis (PCA), kernel PCA, and linear discriminant analysis (LDA), were examined. Finally, considering linguality information, the classification was performed using a probabilistic neural network (PNN).Results: Using LDA and the PNN, the highest recognition rates of 95.51%, 95.7%, and 95.98% were attained for the 5C, 3A, and 3V, respectively. Considering the linguality information, a further improvement of the classification rates accomplished.Conclusion: The proposed methodology can provide a valuable tool for discriminating affective states in practical applications within the area of human-computer interfaces
    corecore