326 research outputs found

    Interactive visualization of event logs for cybersecurity

    Get PDF
    Hidden cyber threats revealed with new visualization software Eventpa

    Retrospective on a Decade of Research in Visualization for Cybersecurity

    Get PDF
    Over the past decade, the visualization for cybersecurity (VizSec) research community has adapted many information visualization techniques to support the critical work of cyber analysts. While these efforts have yielded many specialized tools and platforms, the community lacks a unified approach to the design and implementation of these systems. In this work, we provide a retrospective analysis of the past decade of VizSec publications, with an eye toward developing a more cohesive understanding of the emerging patterns of design at work in our community. We identify common thematic groupings among existing work, as well as several interesting pat- terns of design around the utilization of various visual encodings. We also discuss existing gaps in the adaptation of information visualization techniques to cybersecurity applications, and recommend avenues for future exploration

    Análise colaborativa de grandes conjuntos de séries temporais

    Get PDF
    The recent expansion of metrification on a daily basis has led to the production of massive quantities of data, and in many cases, these collected metrics are only useful for knowledge building when seen as a full sequence of data ordered by time, which constitutes a time series. To find and interpret meaningful behavioral patterns in time series, a multitude of analysis software tools have been developed. Many of the existing solutions use annotations to enable the curation of a knowledge base that is shared between a group of researchers over a network. However, these tools also lack appropriate mechanisms to handle a high number of concurrent requests and to properly store massive data sets and ontologies, as well as suitable representations for annotated data that are visually interpretable by humans and explorable by automated systems. The goal of the work presented in this dissertation is to iterate on existing time series analysis software and build a platform for the collaborative analysis of massive time series data sets, leveraging state-of-the-art technologies for querying, storing and displaying time series and annotations. A theoretical and domain-agnostic model was proposed to enable the implementation of a distributed, extensible, secure and high-performant architecture that handles various annotation proposals in simultaneous and avoids any data loss from overlapping contributions or unsanctioned changes. Analysts can share annotation projects with peers, restricting a set of collaborators to a smaller scope of analysis and to a limited catalog of annotation semantics. Annotations can express meaning not only over a segment of time, but also over a subset of the series that coexist in the same segment. A novel visual encoding for annotations is proposed, where annotations are rendered as arcs traced only over the affected series’ curves in order to reduce visual clutter. Moreover, the implementation of a full-stack prototype with a reactive web interface was described, directly following the proposed architectural and visualization model while applied to the HVAC domain. The performance of the prototype under different architectural approaches was benchmarked, and the interface was tested in its usability. Overall, the work described in this dissertation contributes with a more versatile, intuitive and scalable time series annotation platform that streamlines the knowledge-discovery workflow.A recente expansão de metrificação diária levou à produção de quantidades massivas de dados, e em muitos casos, estas métricas são úteis para a construção de conhecimento apenas quando vistas como uma sequência de dados ordenada por tempo, o que constitui uma série temporal. Para se encontrar padrões comportamentais significativos em séries temporais, uma grande variedade de software de análise foi desenvolvida. Muitas das soluções existentes utilizam anotações para permitir a curadoria de uma base de conhecimento que é compartilhada entre investigadores em rede. No entanto, estas ferramentas carecem de mecanismos apropriados para lidar com um elevado número de pedidos concorrentes e para armazenar conjuntos massivos de dados e ontologias, assim como também representações apropriadas para dados anotados que são visualmente interpretáveis por seres humanos e exploráveis por sistemas automatizados. O objetivo do trabalho apresentado nesta dissertação é iterar sobre o software de análise de séries temporais existente e construir uma plataforma para a análise colaborativa de grandes conjuntos de séries temporais, utilizando tecnologias estado-de-arte para pesquisar, armazenar e exibir séries temporais e anotações. Um modelo teórico e agnóstico quanto ao domínio foi proposto para permitir a implementação de uma arquitetura distribuída, extensível, segura e de alto desempenho que lida com várias propostas de anotação em simultâneo e evita quaisquer perdas de dados provenientes de contribuições sobrepostas ou alterações não-sancionadas. Os analistas podem compartilhar projetos de anotação com colegas, restringindo um conjunto de colaboradores a uma janela de análise mais pequena e a um catálogo limitado de semântica de anotação. As anotações podem exprimir significado não apenas sobre um intervalo de tempo, mas também sobre um subconjunto das séries que coexistem no mesmo intervalo. Uma nova codificação visual para anotações é proposta, onde as anotações são desenhadas como arcos traçados apenas sobre as curvas de séries afetadas de modo a reduzir o ruído visual. Para além disso, a implementação de um protótipo full-stack com uma interface reativa web foi descrita, seguindo diretamente o modelo de arquitetura e visualização proposto enquanto aplicado ao domínio AVAC. O desempenho do protótipo com diferentes decisões arquiteturais foi avaliado, e a interface foi testada quanto à sua usabilidade. Em geral, o trabalho descrito nesta dissertação contribui com uma abordagem mais versátil, intuitiva e escalável para uma plataforma de anotação sobre séries temporais que simplifica o fluxo de trabalho para a descoberta de conhecimento.Mestrado em Engenharia Informátic

    A Task-Centered Visualization Design Environment and a Method for Measuring the Complexity of Visualization Designs

    Get PDF
    Recent years have seen a growing interest in the emerging area of computer security visualization which is about developing visualization methods to help solve computer security problems. In this thesis, we will first present a method for measuring the complexity of information visualization designs. The complexity is measured in terms of visual integration, number of separable dimensions for each visual unit, the complexity of interpreting the visual attributes, number of visual units, and the efficiency of visual search. This method is designed to better assist fellow developers to quickly evaluate multiple design choices, potentially enables computer to automatically measure the complexity of visualization data. We will also analyze the design space of network security visualization. Our main contribution is a new taxonomy that consists of three dimensions – data, visualizations, and tasks. Each dimension is further divided into hierarchical layers, and for each layer we have identified key parameters for making major design choices. This new taxonomy provides a comprehensive framework that can guide network security visualization developers to systematically explore the design space and make informed design decisions. It can also help developers or users systematically evaluate existing network security visualization techniques and systems. Finally it helps developers identify gaps in the design space and create new techniques. Taxonomy showed that most of the existing computer security visualization programs are data centered. However, some studies have shown that task centered visualization is perhaps more effective. To test this hypothesis, we propose a task centered visualization design framework, in which tasks are explicitly identified and organized and visualizations are constructed for specific tasks and their related data parameters. The center piece of this framework is a task tree which dynamically links the raw data with automatically generated visualization. The task tree serves as a high level interaction technique that allows users to conduct problem solving naturally at the task level, while still giving end users flexible control over the visualization construction. This work is currently being extended by building a prototype visualization system based on a Task-centered Visualization Design Architecture

    CHORUS Deliverable 2.1: State of the Art on Multimedia Search Engines

    Get PDF
    Based on the information provided by European projects and national initiatives related to multimedia search as well as domains experts that participated in the CHORUS Think-thanks and workshops, this document reports on the state of the art related to multimedia content search from, a technical, and socio-economic perspective. The technical perspective includes an up to date view on content based indexing and retrieval technologies, multimedia search in the context of mobile devices and peer-to-peer networks, and an overview of current evaluation and benchmark inititiatives to measure the performance of multimedia search engines. From a socio-economic perspective we inventorize the impact and legal consequences of these technical advances and point out future directions of research

    Cognitive Foundations for Visual Analytics

    Full text link

    Thinking interactively with visualization

    Get PDF
    Interaction is becoming an integral part of using visualization for analysis. When interaction is tightly and appropriately coupled with visualization, it can transform the visualization from display- ing static imagery to assisting comprehensive analysis of data at all scales. In this relationship, a deeper understanding of the role of interaction, its effects, and how visualization relates to interaction is necessary for designing systems in which the two components complement each other. This thesis approaches interaction in visualization from three different perspectives. First, it considers the cost of maintaining interaction in manipulating visualization of large datasets. Namely, large datasets often require a simplification process for the visualization to maintain interactivity, and this thesis examines how simplification affects the resulting visualization. Secondly, example interactive visual analytical systems are presented to demonstrate how interactivity could be applied in visualization. Specifically, four fully developed systems for four distinct problem domains are discussed to determine the common role of interactivity in these visualizations that make the systems successful. Lastly, this thesis presents evidence that interactions are important for analytical tasks using visualizations. Interaction logs of financial analysts using a visualization were collected, coded, and examined to determine the amount of analysis strategies contained within the interaction logs. The finding supports the benefits of high interactivity in analytical tasks when using a visualization. The example visualizations used to support these three perspectives are diverse in their goals and features. However, they all share similar design guidelines and visualization principles. Based on their characteristics, this thesis groups these visualizations into urban visualization, visual analytical systems, and interaction capturing and discusses them separately in terms of lessons learned and future directions

    3D Visualisation - An Application and Assessment for Computer Network Traffic Analysis

    Full text link
    The intent of this research is to develop and assess the application of 3D data visualisation to the field of computer security. The growth of available data relating to computer networks necessitates a more efficient and effective way of presenting information to analysts in support of decision making and situational awareness. Advances in computer hardware and display software have made more complex and interactive presentation of data in 3D possible. While many attempts at creation of data-rich 3D displays have been made in the field of computer security, they have not become the tool of choice in the industry. There is also a limited amount of published research in the assessment of these tools in comparison to 2D graphical and tabular approaches to displaying the same data. This research was conducted through creation of a novel abstraction framework for visualisation of computer network data, the Visual Interactive Network Analysis Framework (VINAF). This framework was implemented in software and the software prototype was assessed using both a procedural approach applied to a published forensics challenge and also through a human participant based experiment. The key contributions to the fields of computer security and data visualisation made by this research include the creation of a novel abstraction framework for computer network traffic which features several new visualisation approaches. An implementation of this software was developed for the specific cybersecurity related task of computer network traffic analysis and published under an open source license to the cybersecurity community. The research contributes a novel approach to human-based experimentation developed during the COVID-19 pandemic and also implemented a novel procedure-based testing approach to the assessment of the prototype data visualisation tool. Results of the research showed, through procedural experimentation, that the abstraction framework is effective for network forensics tasks and exhibited several advantages when compared to alternate approaches. The user participation experiment indicated that most of the participants deemed the abstraction framework to be effective in several task related to computer network traffic analysis. There was not a strong indication that it would be preferred over existing approaches utilised by the participants, however, it would likely be used to augment existing methods

    A Comprehensive Survey on Graph Summarization with Graph Neural Networks

    Full text link
    As large-scale graphs become more widespread, more and more computational challenges with extracting, processing, and interpreting large graph data are being exposed. It is therefore natural to search for ways to summarize these expansive graphs while preserving their key characteristics. In the past, most graph summarization techniques sought to capture the most important part of a graph statistically. However, today, the high dimensionality and complexity of modern graph data are making deep learning techniques more popular. Hence, this paper presents a comprehensive survey of progress in deep learning summarization techniques that rely on graph neural networks (GNNs). Our investigation includes a review of the current state-of-the-art approaches, including recurrent GNNs, convolutional GNNs, graph autoencoders, and graph attention networks. A new burgeoning line of research is also discussed where graph reinforcement learning is being used to evaluate and improve the quality of graph summaries. Additionally, the survey provides details of benchmark datasets, evaluation metrics, and open-source tools that are often employed in experimentation settings, along with a discussion on the practical uses of graph summarization in different fields. Finally, the survey concludes with a number of open research challenges to motivate further study in this area.Comment: 20 pages, 4 figures, 3 tables, Journal of IEEE Transactions on Artificial Intelligenc
    • …
    corecore