5,152 research outputs found

    AN EXTENDABLE VISUALIZATION AND USER INTERFACE DESIGN FOR TIME-VARYING MULTIVARIATE GEOSCIENCE DATA

    Get PDF
    Geoscience data has unique and complex data structures, and its visualization has been challenging due to a lack of effective data models and visual representations to tackle the heterogeneity of geoscience data. In today’s big data era, the needs of visualizing geoscience data become urgent, especially driven by its potential value to human societies, such as environmental disaster prediction, urban growth simulation, and so on. In this thesis, I created a novel geoscience data visualization framework and applied interface automata theory to geoscience data visualization tasks. The framework can support heterogeneous geoscience data and facilitate data operations. The interface automata can generate a series of interactions that can efficiently impress users, which also provides an intuitive method for visualizing and analysis geoscience data. Except clearly guided users to the specific visualization, interface automata can also enhance user experience by eliminating automation surprising, and the maintenance overhead is also reduced. The new framework was applied to INSIGHT, a scientific hydrology visualization and analysis system that was developed by the Nebraska Department of Natural Resources (NDNR). Compared to the existing INSIGHT solution, the new framework has brought many advantages that do not exist in the existing solution, which proved that the framework is efficient and extendable for visualizing geoscience data. Adviser: Hongfeng Y

    AN EXTENDABLE VISUALIZATION AND USER INTERFACE DESIGN FOR TIME-VARYING MULTIVARIATE GEOSCIENCE DATA

    Get PDF
    Geoscience data has unique and complex data structures, and its visualization has been challenging due to a lack of effective data models and visual representations to tackle the heterogeneity of geoscience data. In today’s big data era, the needs of visualizing geoscience data become urgent, especially driven by its potential value to human societies, such as environmental disaster prediction, urban growth simulation, and so on. In this thesis, I created a novel geoscience data visualization framework and applied interface automata theory to geoscience data visualization tasks. The framework can support heterogeneous geoscience data and facilitate data operations. The interface automata can generate a series of interactions that can efficiently impress users, which also provides an intuitive method for visualizing and analysis geoscience data. Except clearly guided users to the specific visualization, interface automata can also enhance user experience by eliminating automation surprising, and the maintenance overhead is also reduced. The new framework was applied to INSIGHT, a scientific hydrology visualization and analysis system that was developed by the Nebraska Department of Natural Resources (NDNR). Compared to the existing INSIGHT solution, the new framework has brought many advantages that do not exist in the existing solution, which proved that the framework is efficient and extendable for visualizing geoscience data. Adviser: Hongfeng Y

    Simulators for teaching formal languages and automata theory: a comparative survey

    Get PDF
    Formal languages and automata theory (FL&AT) are central subjects in the CS curricula which are usually diffcult both to teach and to learn. This situation has motivated the development of a number of computer simulators as educational tools which allow the student to implement and `bring to life' many topics which traditionally were studied and analyzed mathematically rather than algorithmically. This paper discusses the main features of several educational software tools currently available for teaching FL&AT. Advantages and weaknesses of different tools are analyzed and contrasted. Based in our experience, some rationales and practical considerations for the development of this kind of educational tools are proposed.Eje: Tecnología aplicada en EducaciónRed de Universidades con Carreras en Informática (RedUNCI

    Automata learning algorithms and processes for providing more complete systems requirements specification by scenario generation, CSP-based syntax-oriented model construction, and R2D2C system requirements transformation

    Get PDF
    Systems, methods and apparatus are provided through which in some embodiments, automata learning algorithms and techniques are implemented to generate a more complete set of scenarios for requirements based programming. More specifically, a CSP-based, syntax-oriented model construction, which requires the support of a theorem prover, is complemented by model extrapolation, via automata learning. This may support the systematic completion of the requirements, the nature of the requirement being partial, which provides focus on the most prominent scenarios. This may generalize requirement skeletons by extrapolation and may indicate by way of automatically generated traces where the requirement specification is too loose and additional information is required

    Explaining Aha! moments in artificial agents through IKE-XAI: Implicit Knowledge Extraction for eXplainable AI

    Get PDF
    During the learning process, a child develops a mental representation of the task he or she is learning. A Machine Learning algorithm develops also a latent representation of the task it learns. We investigate the development of the knowledge construction of an artificial agent through the analysis of its behavior, i.e., its sequences of moves while learning to perform the Tower of Hanoï (TOH) task. The TOH is a well-known task in experimental contexts to study the problem-solving processes and one of the fundamental processes of children’s knowledge construction about their world. We position ourselves in the field of explainable reinforcement learning for developmental robotics, at the crossroads of cognitive modeling and explainable AI. Our main contribution proposes a 3-step methodology named Implicit Knowledge Extraction with eXplainable Artificial Intelligence (IKE-XAI) to extract the implicit knowledge, in form of an automaton, encoded by an artificial agent during its learning. We showcase this technique to solve and explain the TOH task when researchers have only access to moves that represent observational behavior as in human–machine interaction. Therefore, to extract the agent acquired knowledge at different stages of its training, our approach combines: first, a Q-learning agent that learns to perform the TOH task; second, a trained recurrent neural network that encodes an implicit representation of the TOH task; and third, an XAI process using a post-hoc implicit rule extraction algorithm to extract finite state automata. We propose using graph representations as visual and explicit explanations of the behavior of the Q-learning agent. Our experiments show that the IKEXAI approach helps understanding the development of the Q-learning agent behavior by providing a global explanation of its knowledge evolution during learning. IKE-XAI also allows researchers to identify the agent’s Aha! moment by determining from what moment the knowledge representation stabilizes and the agent no longer learns.Region BretagneEuropean Union via the FEDER programSpanish Government Juan de la Cierva Incorporacion - MCIN/AEI IJC2019-039152-IGoogle Research Scholar Gran
    • …
    corecore