24,722 research outputs found

    Structured Review of the Evidence for Effects of Code Duplication on Software Quality

    Get PDF
    This report presents the detailed steps and results of a structured review of code clone literature. The aim of the review is to investigate the evidence for the claim that code duplication has a negative effect on code changeability. This report contains only the details of the review for which there is not enough place to include them in the companion paper published at a conference (Hordijk, Ponisio et al. 2009 - Harmfulness of Code Duplication - A Structured Review of the Evidence)

    Structured Review of Code Clone Literature

    Get PDF
    This report presents the results of a structured review of code clone literature. The aim of the review is to assemble a conceptual model of clone-related concepts which helps us to reason about clones. This conceptual model unifies clone concepts from a wide range of literature, so that findings about clones can be compared with each other

    Harmfulness of Code Duplication - A Structured Review of the Evidence

    Get PDF
    Duplication of code has long been thought to decrease changeability of systems, but recently doubts have been expressed whether this is true in general. This is a problem for researchers because it makes the value of research aimed against clones uncertain, and for practitioners as they cannot be sure whether their effort in reducing duplication is well-spent. In this paper we try to shed light on this is-sue by collecting empirical evidence in favor and against the nega-tive effects of duplication on changeability. We go beyond the flat yes/no-question of harmfulness and present an explanatory model to show the mechanisms through which duplication is suspected to affect quality. We aggregate the evidence for each of the causal links in the model. This sheds light on the current state of duplication re-search and helps practitioners choose between the available mitiga-tion strategies

    Utilizing a 3D game engine to develop a virtual design review system

    Get PDF
    A design review process is where information is exchanged between the designers and design reviewers to resolve any potential design related issues, and to ensure that the interests and goals of the owner are met. The effective execution of design review will minimize potential errors or conflicts, reduce the time for review, shorten the project life-cycle, allow for earlier occupancy, and ultimately translate into significant total project savings to the owner. However, the current methods of design review are still heavily relying on 2D paper-based format, sequential and lack central and integrated information base for efficient exchange and flow of information. There is thus a need for the use of a new medium that allow for 3D visualization of designs, collaboration among designers and design reviewers, and early and easy access to design review information. This paper documents the innovative utilization of a 3D game engine, the Torque Game Engine as the underlying tool and enabling technology for a design review system, the Virtual Design Review System for architectural designs. Two major elements are incorporated; 1) a 3D game engine as the driving tool for the development and implementation of design review processes, and 2) a virtual environment as the medium for design review, where visualization of design and design review information is based on sound principles of GUI design. The development of the VDRS involves two major phases; firstly, the creation of the assets and the assembly of the virtual environment, and secondly, the modification of existing functions or introducing new functionality through programming of the 3D game engine in order to support design review in a virtual environment. The features that are included in the VDRS are support for database, real-time collaboration across network, viewing and navigation modes, 3D object manipulation, parametric input, GUI, and organization for 3D objects

    An automated wrapper-based approach to the design of dependable software

    Get PDF
    The design of dependable software systems invariably comprises two main activities: (i) the design of dependability mechanisms, and (ii) the location of dependability mechanisms. It has been shown that these activities are intrinsically difficult. In this paper we propose an automated wrapper-based methodology to circumvent the problems associated with the design and location of dependability mechanisms. To achieve this we replicate important variables so that they can be used as part of standard, efficient dependability mechanisms. These well-understood mechanisms are then deployed in all relevant locations. To validate the proposed methodology we apply it to three complex software systems, evaluating the dependability enhancement and execution overhead in each case. The results generated demonstrate that the system failure rate of a wrapped software system can be several orders of magnitude lower than that of an unwrapped equivalent
    corecore