976 research outputs found

    Supporting On-Line Distributed Monitoring and Debugging

    Get PDF
    Monitoring systems have traditionally been developed with rigid objectives and functionalities, and tied to specific languages, libraries and run-time environments. There is a need for more flexible monitoring systems which can be easily adapted to distinct requirements. On-line monitoring has been considered as increasingly important for observation and control of a distributed application. In this paper we discuss monitoring interfaces and architectures which support more extensible monitoring and control services. We describe our work on the development of a distributed monitoring infrastructure, and illustrate how it eases the implementation of a complex distributed debugging architecture. We also discuss several issues concerning support for tool interoperability and illustrate how the cooperation among multiple concurrent tools can ease the task of distributed debugging

    Systematic debugging methods for large-scale HPC computational frameworks

    Get PDF
    pre-printParallel computational frameworks for high-performance computing are central to the advancement of simulation-based studies in science and engineering. Finding and fixing bugs in these frameworks can be time consuming. If left unchecked, these bugs diminish the amount of new science performed. A systematic study of the Uintah Computational Framework investigates debugging approaches, leveraging the framework's modular structure

    EASYPAP: a Framework for Learning Parallel Programming

    Get PDF
    This paper presents EASYPAP, an easy-to-use programming environment designed to help students to learn parallel programming. EASYPAP features a wide range of 2D computation kernels that the students are invited to parallelize using Pthreads, OpenMP, OpenCL or MPI. Execution of kernels can be interactively visualized, and powerful monitoring tools allow students to observe both the scheduling of computations and the assignment of 2D tiles to threads/processes. By focusing on algorithms and data distribution, students can experiment with diverse code variants and tune multiple parameters, resulting in richer problem exploration and faster progress towards efficient solutions. We present selected lab assignments which illustrate how EASYPAP improves the way students explore parallel programming

    DIVERSE: a Software Toolkit to Integrate Distributed Simulations with Heterogeneous Virtual Environments

    Get PDF
    We present DIVERSE (Device Independent Virtual Environments- Reconfigurable, Scalable, Extensible), which is a modular collection of complimentary software packages that we have developed to facilitate the creation of distributed operator-in-the-loop simulations. In DIVERSE we introduce a novel implementation of remote shared memory (distributed shared memory) that uses Internet Protocol (IP) networks. We also introduce a new method that automatically extends hardware drivers (not in the operating system kernel driver sense) into inter-process and Internet hardware services. Using DIVERSE, a program can display in a CAVEâ„¢, ImmersaDeskâ„¢, head mounted display (HMD), desktop or laptop without modification. We have developed a method of configuring user programs at run-time by loading dynamic shared objects (DSOs), in contrast to the more common practice of creating interpreted configuration languages. We find that by loading DSOs the development time, complexity and size of DIVERSE and DIVERSE user applications is significantly reduced. Configurations to support different I/O devices, device emulators, visual displays, and any component of a user application including interaction techniques, can be changed at run-time by loading different sets of DIVERSE DSOs. In addition, interpreted run-time configuration parsers have been implemented using DIVERSE DSOs; new ones can be created as needed. DIVERSE is free software, licensed under the terms of the GNU General Public License (GPL) and the GNU Lesser General Public License (LGPL) licenses. We describe the DIVERSE architecture and demonstrate how DIVERSE was used in the development of a specific application, an operator-in-the-loop Navy ship-board crane simulator, which runs unmodified on a desktop computer and/or in a CAVE with motion base motion queuing
    • …
    corecore