125,634 research outputs found

    User-centered visual analysis using a hybrid reasoning architecture for intensive care units

    Get PDF
    One problem pertaining to Intensive Care Unit information systems is that, in some cases, a very dense display of data can result. To ensure the overview and readability of the increasing volumes of data, some special features are required (e.g., data prioritization, clustering, and selection mechanisms) with the application of analytical methods (e.g., temporal data abstraction, principal component analysis, and detection of events). This paper addresses the problem of improving the integration of the visual and analytical methods applied to medical monitoring systems. We present a knowledge- and machine learning-based approach to support the knowledge discovery process with appropriate analytical and visual methods. Its potential benefit to the development of user interfaces for intelligent monitors that can assist with the detection and explanation of new, potentially threatening medical events. The proposed hybrid reasoning architecture provides an interactive graphical user interface to adjust the parameters of the analytical methods based on the users' task at hand. The action sequences performed on the graphical user interface by the user are consolidated in a dynamic knowledge base with specific hybrid reasoning that integrates symbolic and connectionist approaches. These sequences of expert knowledge acquisition can be very efficient for making easier knowledge emergence during a similar experience and positively impact the monitoring of critical situations. The provided graphical user interface incorporating a user-centered visual analysis is exploited to facilitate the natural and effective representation of clinical information for patient care

    Searching Data: A Review of Observational Data Retrieval Practices in Selected Disciplines

    Get PDF
    A cross-disciplinary examination of the user behaviours involved in seeking and evaluating data is surprisingly absent from the research data discussion. This review explores the data retrieval literature to identify commonalities in how users search for and evaluate observational research data. Two analytical frameworks rooted in information retrieval and science technology studies are used to identify key similarities in practices as a first step toward developing a model describing data retrieval

    Data, Data Everywhere, and Still Too Hard to Link: Insights from User Interactions with Diabetes Apps

    Get PDF
    For those with chronic conditions, such as Type 1 diabetes, smartphone apps offer the promise of an affordable, convenient, and personalized disease management tool. How- ever, despite significant academic research and commercial development in this area, diabetes apps still show low adoption rates and underwhelming clinical outcomes. Through user-interaction sessions with 16 people with Type 1 diabetes, we provide evidence that commonly used interfaces for diabetes self-management apps, while providing certain benefits, can fail to explicitly address the cognitive and emotional requirements of users. From analysis of these sessions with eight such user interface designs, we report on user requirements, as well as interface benefits, limitations, and then discuss the implications of these findings. Finally, with the goal of improving these apps, we identify 3 questions for designers, and review for each in turn: current shortcomings, relevant approaches, exposed challenges, and potential solutions

    Finding Temporal Patterns in Noisy Longitudinal Data: A Study in Diabetic Retinopathy

    Get PDF
    This paper describes an approach to temporal pattern mining using the concept of user defined temporal prototypes to define the nature of the trends of interests. The temporal patterns are defined in terms of sequences of support values associated with identified frequent patterns. The prototypes are defined mathematically so that they can be mapped onto the temporal patterns. The focus for the advocated temporal pattern mining process is a large longitudinal patient database collected as part of a diabetic retinopathy screening programme, The data set is, in itself, also of interest as it is very noisy (in common with other similar medical datasets) and does not feature a clear association between specific time stamps and subsets of the data. The diabetic retinopathy application, the data warehousing and cleaning process, and the frequent pattern mining procedure (together with the application of the prototype concept) are all described in the paper. An evaluation of the frequent pattern mining process is also presented
    corecore