296,316 research outputs found

    Multi-Modal Multi-Scale Deep Learning for Large-Scale Image Annotation

    Full text link
    Image annotation aims to annotate a given image with a variable number of class labels corresponding to diverse visual concepts. In this paper, we address two main issues in large-scale image annotation: 1) how to learn a rich feature representation suitable for predicting a diverse set of visual concepts ranging from object, scene to abstract concept; 2) how to annotate an image with the optimal number of class labels. To address the first issue, we propose a novel multi-scale deep model for extracting rich and discriminative features capable of representing a wide range of visual concepts. Specifically, a novel two-branch deep neural network architecture is proposed which comprises a very deep main network branch and a companion feature fusion network branch designed for fusing the multi-scale features computed from the main branch. The deep model is also made multi-modal by taking noisy user-provided tags as model input to complement the image input. For tackling the second issue, we introduce a label quantity prediction auxiliary task to the main label prediction task to explicitly estimate the optimal label number for a given image. Extensive experiments are carried out on two large-scale image annotation benchmark datasets and the results show that our method significantly outperforms the state-of-the-art.Comment: Submited to IEEE TI

    An Empirical Study and Analysis of Generalized Zero-Shot Learning for Object Recognition in the Wild

    Full text link
    Zero-shot learning (ZSL) methods have been studied in the unrealistic setting where test data are assumed to come from unseen classes only. In this paper, we advocate studying the problem of generalized zero-shot learning (GZSL) where the test data's class memberships are unconstrained. We show empirically that naively using the classifiers constructed by ZSL approaches does not perform well in the generalized setting. Motivated by this, we propose a simple but effective calibration method that can be used to balance two conflicting forces: recognizing data from seen classes versus those from unseen ones. We develop a performance metric to characterize such a trade-off and examine the utility of this metric in evaluating various ZSL approaches. Our analysis further shows that there is a large gap between the performance of existing approaches and an upper bound established via idealized semantic embeddings, suggesting that improving class semantic embeddings is vital to GZSL.Comment: ECCV2016 camera-read

    Structure propagation for zero-shot learning

    Full text link
    The key of zero-shot learning (ZSL) is how to find the information transfer model for bridging the gap between images and semantic information (texts or attributes). Existing ZSL methods usually construct the compatibility function between images and class labels with the consideration of the relevance on the semantic classes (the manifold structure of semantic classes). However, the relationship of image classes (the manifold structure of image classes) is also very important for the compatibility model construction. It is difficult to capture the relationship among image classes due to unseen classes, so that the manifold structure of image classes often is ignored in ZSL. To complement each other between the manifold structure of image classes and that of semantic classes information, we propose structure propagation (SP) for improving the performance of ZSL for classification. SP can jointly consider the manifold structure of image classes and that of semantic classes for approximating to the intrinsic structure of object classes. Moreover, the SP can describe the constrain condition between the compatibility function and these manifold structures for balancing the influence of the structure propagation iteration. The SP solution provides not only unseen class labels but also the relationship of two manifold structures that encode the positive transfer in structure propagation. Experimental results demonstrate that SP can attain the promising results on the AwA, CUB, Dogs and SUN databases

    Multiscale Discriminant Saliency for Visual Attention

    Full text link
    The bottom-up saliency, an early stage of humans' visual attention, can be considered as a binary classification problem between center and surround classes. Discriminant power of features for the classification is measured as mutual information between features and two classes distribution. The estimated discrepancy of two feature classes very much depends on considered scale levels; then, multi-scale structure and discriminant power are integrated by employing discrete wavelet features and Hidden markov tree (HMT). With wavelet coefficients and Hidden Markov Tree parameters, quad-tree like label structures are constructed and utilized in maximum a posterior probability (MAP) of hidden class variables at corresponding dyadic sub-squares. Then, saliency value for each dyadic square at each scale level is computed with discriminant power principle and the MAP. Finally, across multiple scales is integrated the final saliency map by an information maximization rule. Both standard quantitative tools such as NSS, LCC, AUC and qualitative assessments are used for evaluating the proposed multiscale discriminant saliency method (MDIS) against the well-know information-based saliency method AIM on its Bruce Database wity eye-tracking data. Simulation results are presented and analyzed to verify the validity of MDIS as well as point out its disadvantages for further research direction.Comment: 16 pages, ICCSA 2013 - BIOCA sessio

    Solar Power Plant Detection on Multi-Spectral Satellite Imagery using Weakly-Supervised CNN with Feedback Features and m-PCNN Fusion

    Full text link
    Most of the traditional convolutional neural networks (CNNs) implements bottom-up approach (feed-forward) for image classifications. However, many scientific studies demonstrate that visual perception in primates rely on both bottom-up and top-down connections. Therefore, in this work, we propose a CNN network with feedback structure for Solar power plant detection on middle-resolution satellite images. To express the strength of the top-down connections, we introduce feedback CNN network (FB-Net) to a baseline CNN model used for solar power plant classification on multi-spectral satellite data. Moreover, we introduce a method to improve class activation mapping (CAM) to our FB-Net, which takes advantage of multi-channel pulse coupled neural network (m-PCNN) for weakly-supervised localization of the solar power plants from the features of proposed FB-Net. For the proposed FB-Net CAM with m-PCNN, experimental results demonstrated promising results on both solar-power plant image classification and detection task.Comment: 9 pages, 9 figures, 4 table
    • …
    corecore