1,359 research outputs found

    Clutter-Based Dimension Reordering in Multi-Dimensional Data Visualization

    Get PDF
    Visual clutter denotes a disordered collection of graphical entities in information visualization. It can obscure the structure present in the data. Even in a small dataset, visual clutter makes it hard for the viewer to find patterns, relationships and structure. In this thesis, I study visual clutter with four distinct visualization techniques, and present the concept and framework of Clutter-Based Dimension Reordering (CBDR). Dimension order is an attribute that can significantly affect a visualization\u27s expressiveness. By varying the dimension order in a display, it is possible to reduce clutter without reducing data content or modifying the data in any way. Clutter reduction is a display-dependent task. In this thesis, I apply the CBDR framework to four different visualization techniques. For each display technique, I determine what constitutes clutter in terms of display properties, then design a metric to measure visual clutter in this display. Finally I search for an order that minimizes the clutter in a display. Different algorithms for the searching process are discussed in this thesis as well. In order to gather users\u27 responses toward the clutter measures used in the Clutter-Based Dimension Reordering process and validate the usefulness of CBDR, I also conducted an evaluation with two groups of users. The study result proves that users find our approach to be helpful for visually exploring datasets. The users also had many comments and suggestions for the CBDR approach as well as for visual clutter reduction in general. The content and result of the user study are included in this thesis

    Unsupervised learning of invariant representations

    Get PDF
    The present phase of Machine Learning is characterized by supervised learning algorithms relying on large sets of labeled examples (. n\u2192 1e). The next phase is likely to focus on algorithms capable of learning from very few labeled examples (. n\u21921), like humans seem able to do. We propose an approach to this problem and describe the underlying theory, based on the unsupervised, automatic learning of a "good" representation for supervised learning, characterized by small sample complexity. We consider the case of visual object recognition, though the theory also applies to other domains like speech. The starting point is the conjecture, proved in specific cases, that image representations which are invariant to translation, scaling and other transformations can considerably reduce the sample complexity of learning. We prove that an invariant and selective signature can be computed for each image or image patch: the invariance can be exact in the case of group transformations and approximate under non-group transformations. A module performing filtering and pooling, like the simple and complex cells described by Hubel and Wiesel, can compute such signature. The theory offers novel unsupervised learning algorithms for "deep" architectures for image and speech recognition. We conjecture that the main computational goal of the ventral stream of visual cortex is to provide a hierarchical representation of new objects/images which is invariant to transformations, stable, and selective for recognition-and show how this representation may be continuously learned in an unsupervised way during development and visual experienc

    Unsupervised learning of invariant representations with low sample complexity: the magic of sensory cortex or a new framework for machine learning?

    Get PDF
    The present phase of Machine Learning is characterized by supervised learning algorithms relying on large sets of labeled examples (n → ∞). The next phase is likely to focus on algorithms capable of learning from very few labeled examples (n → ∞), like humans seem able to do. We propose an approach to this problem and describe the underlying theory, based on the unsupervised, automatic learning of a "good" representation for supervised learning, characterized by small sample complexity (n). We consider the case of visual object recognition though the theory applies to other domains. The starting point is the conjecture, proved in specific cases, that image representations which are invariant to translations, scaling and other transformations can considerably reduce the sample complexity of learning. We prove that an invariant and unique (discriminative) signature can be computed for each image patch, I, in terms of empirical distributions of the dot-products between I and a set of templates stored during unsupervised learning. A module performing filtering and pooling, like the simple and complex cells described by Hubel and Wiesel, can compute such estimates. Hierarchical architectures consisting of this basic Hubel-Wiesel moduli inherit its properties of invariance, stability, and discriminability while capturing the compositional organization of the visual world in terms of wholes and parts. The theory extends existing deep learning convolutional architectures for image and speech recognition. It also suggests that the main computational goal of the ventral stream of visual cortex is to provide a hierarchical representation of new objects/images which is invariant to transformations, stable, and discriminative for recognition|and that this representation may be continuously learned in an unsupervised way during development and visual experience.This work was supported by the Center for Brains, Minds and Machines (CBMM), funded by NSF STC award CCF - 1231216

    BI-LAVA: Biocuration with Hierarchical Image Labeling through Active Learning and Visual Analysis

    Full text link
    In the biomedical domain, taxonomies organize the acquisition modalities of scientific images in hierarchical structures. Such taxonomies leverage large sets of correct image labels and provide essential information about the importance of a scientific publication, which could then be used in biocuration tasks. However, the hierarchical nature of the labels, the overhead of processing images, the absence or incompleteness of labeled data, and the expertise required to label this type of data impede the creation of useful datasets for biocuration. From a multi-year collaboration with biocurators and text-mining researchers, we derive an iterative visual analytics and active learning strategy to address these challenges. We implement this strategy in a system called BI-LAVA Biocuration with Hierarchical Image Labeling through Active Learning and Visual Analysis. BI-LAVA leverages a small set of image labels, a hierarchical set of image classifiers, and active learning to help model builders deal with incomplete ground-truth labels, target a hierarchical taxonomy of image modalities, and classify a large pool of unlabeled images. BI-LAVA's front end uses custom encodings to represent data distributions, taxonomies, image projections, and neighborhoods of image thumbnails, which help model builders explore an unfamiliar image dataset and taxonomy and correct and generate labels. An evaluation with machine learning practitioners shows that our mixed human-machine approach successfully supports domain experts in understanding the characteristics of classes within the taxonomy, as well as validating and improving data quality in labeled and unlabeled collections.Comment: 15 pages, 6 figure

    Doctor of Philosophy

    Get PDF
    dissertationWith the ever-increasing amount of available computing resources and sensing devices, a wide variety of high-dimensional datasets are being produced in numerous fields. The complexity and increasing popularity of these data have led to new challenges and opportunities in visualization. Since most display devices are limited to communication through two-dimensional (2D) images, many visualization methods rely on 2D projections to express high-dimensional information. Such a reduction of dimension leads to an explosion in the number of 2D representations required to visualize high-dimensional spaces, each giving a glimpse of the high-dimensional information. As a result, one of the most important challenges in visualizing high-dimensional datasets is the automatic filtration and summarization of the large exploration space consisting of all 2D projections. In this dissertation, a new type of algorithm is introduced to reduce the exploration space that identifies a small set of projections that capture the intrinsic structure of high-dimensional data. In addition, a general framework for summarizing the structure of quality measures in the space of all linear 2D projections is presented. However, identifying the representative or informative projections is only part of the challenge. Due to the high-dimensional nature of these datasets, obtaining insights and arriving at conclusions based solely on 2D representations are limited and prone to error. How to interpret the inaccuracies and resolve the ambiguity in the 2D projections is the other half of the puzzle. This dissertation introduces projection distortion error measures and interactive manipulation schemes that allow the understanding of high-dimensional structures via data manipulation in 2D projections

    Visual Analysis of High-Dimensional Point Clouds using Topological Abstraction

    Get PDF
    This thesis is about visualizing a kind of data that is trivial to process by computers but difficult to imagine by humans because nature does not allow for intuition with this type of information: high-dimensional data. Such data often result from representing observations of objects under various aspects or with different properties. In many applications, a typical, laborious task is to find related objects or to group those that are similar to each other. One classic solution for this task is to imagine the data as vectors in a Euclidean space with object variables as dimensions. Utilizing Euclidean distance as a measure of similarity, objects with similar properties and values accumulate to groups, so-called clusters, that are exposed by cluster analysis on the high-dimensional point cloud. Because similar vectors can be thought of as objects that are alike in terms of their attributes, the point cloud\''s structure and individual cluster properties, like their size or compactness, summarize data categories and their relative importance. The contribution of this thesis is a novel analysis approach for visual exploration of high-dimensional point clouds without suffering from structural occlusion. The work is based on implementing two key concepts: The first idea is to discard those geometric properties that cannot be preserved and, thus, lead to the typical artifacts. Topological concepts are used instead to shift away the focus from a point-centered view on the data to a more structure-centered perspective. The advantage is that topology-driven clustering information can be extracted in the data\''s original domain and be preserved without loss in low dimensions. The second idea is to split the analysis into a topology-based global overview and a subsequent geometric local refinement. The occlusion-free overview enables the analyst to identify features and to link them to other visualizations that permit analysis of those properties not captured by the topological abstraction, e.g. cluster shape or value distributions in particular dimensions or subspaces. The advantage of separating structure from data point analysis is that restricting local analysis only to data subsets significantly reduces artifacts and the visual complexity of standard techniques. That is, the additional topological layer enables the analyst to identify structure that was hidden before and to focus on particular features by suppressing irrelevant points during local feature analysis. This thesis addresses the topology-based visual analysis of high-dimensional point clouds for both the time-invariant and the time-varying case. Time-invariant means that the points do not change in their number or positions. That is, the analyst explores the clustering of a fixed and constant set of points. The extension to the time-varying case implies the analysis of a varying clustering, where clusters appear as new, merge or split, or vanish. Especially for high-dimensional data, both tracking---which means to relate features over time---but also visualizing changing structure are difficult problems to solve
    • …
    corecore