2,019 research outputs found

    Constructing Time-Series Momentum Portfolios with Deep Multi-Task Learning

    Full text link
    A diversified risk-adjusted time-series momentum (TSMOM) portfolio can deliver substantial abnormal returns and offer some degree of tail risk protection during extreme market events. The performance of existing TSMOM strategies, however, relies not only on the quality of the momentum signal but also on the efficacy of the volatility estimator. Yet many of the existing studies have always considered these two factors to be independent. Inspired by recent progress in Multi-Task Learning (MTL), we present a new approach using MTL in a deep neural network architecture that jointly learns portfolio construction and various auxiliary tasks related to volatility, such as forecasting realized volatility as measured by different volatility estimators. Through backtesting from January 2000 to December 2020 on a diversified portfolio of continuous futures contracts, we demonstrate that even after accounting for transaction costs of up to 3 basis points, our approach outperforms existing TSMOM strategies. Moreover, experiments confirm that adding auxiliary tasks indeed boosts the portfolio's performance. These findings demonstrate that MTL can be a powerful tool in finance

    Hybrid deep neural networks for mining heterogeneous data

    Get PDF
    In the era of big data, the rapidly growing flood of data represents an immense opportunity. New computational methods are desired to fully leverage the potential that exists within massive structured and unstructured data. However, decision-makers are often confronted with multiple diverse heterogeneous data sources. The heterogeneity includes different data types, different granularities, and different dimensions, posing a fundamental challenge in many applications. This dissertation focuses on designing hybrid deep neural networks for modeling various kinds of data heterogeneity. The first part of this dissertation concerns modeling diverse data types, the first kind of data heterogeneity. Specifically, image data and heterogeneous meta data are modeled. Detecting Copy Number Variations (CNVs) in genetic studies is used as a motivating example. A CNN-DNN blended neural network is proposed to authenticate CNV calls made by current state-of-art CNV detection algorithms. It utilizes hybrid deep neural networks to leverage both scatter plot image signal and heterogeneous numerical meta data for improving CNV calling and review efficiency. The second part of this dissertation deals with data of various frequencies or scales in time series data analysis, the second kind of data heterogeneity. The stock return forecasting problem in the finance field is used as a motivating example. A hybrid framework of Long-Short Term Memory and Deep Neural Network (LSTM-DNN) is developed to enrich the time-series forecasting task with static fundamental information. The application of the proposed framework is not limited to the stock return forecasting problem, but any time-series based prediction tasks. The third part of this dissertation makes an extension of LSTM-DNN framework to account for both temporal and spatial dependency among variables, common in many applications. For example, it is known that stock prices of relevant firms tend to fluctuate together. Such coherent price changes among relevant stocks are referred to a spatial dependency. In this part, Variational Auto Encoder (VAE) is first utilized to recover the latent graphical dependency structure among variables. Then a hybrid deep neural network of Graph Convolutional Network and Long-Short Term Memory network (GCN-LSTM) is developed to model both the graph structured spatial dependency and temporal dependency of variables at different scales. Extensive experiments are conducted to demonstrate the effectiveness of the proposed neural networks with application to solve three representative real-world problems. Additionally, the proposed frameworks can also be applied to other areas filled with similar heterogeneous inputs

    Representation learning in finance

    Get PDF
    Finance studies often employ heterogeneous datasets from different sources with different structures and frequencies. Some data are noisy, sparse, and unbalanced with missing values; some are unstructured, containing text or networks. Traditional techniques often struggle to combine and effectively extract information from these datasets. This work explores representation learning as a proven machine learning technique in learning informative embedding from complex, noisy, and dynamic financial data. This dissertation proposes novel factorization algorithms and network modeling techniques to learn the local and global representation of data in two specific financial applications: analysts’ earnings forecasts and asset pricing. Financial analysts’ earnings forecast is one of the most critical inputs for security valuation and investment decisions. However, it is challenging to fully utilize this type of data due to the missing values. This work proposes one matrix-based algorithm, “Coupled Matrix Factorization,” and one tensor-based algorithm, “Nonlinear Tensor Coupling and Completion Framework,” to impute missing values in analysts’ earnings forecasts and then use the imputed data to predict firms’ future earnings. Experimental analysis shows that missing value imputation and representation learning by coupled matrix/tensor factorization from the observed entries improve the accuracy of firm earnings prediction. The results confirm that representing financial time-series in their natural third-order tensor form improves the latent representation of the data. It learns high-quality embedding by overcoming information loss of flattening data in spatial or temporal dimensions. Traditional asset pricing models focus on linear relationships among asset pricing factors and often ignore nonlinear interaction among firms and factors. This dissertation formulates novel methods to identify nonlinear asset pricing factors and develops asset pricing models that capture global and local properties of data. First, this work proposes an artificial neural network “auto enco der” based model to capture the latent asset pricing factors from the global representation of an equity index. It also shows that autoencoder effectively identifies communal and non-communal assets in an index to facilitate portfolio optimization. Second, the global representation is augmented by propagating information from local communities, where the network determines the strength of this information propagation. Based on the Laplacian spectrum of the equity market network, a network factor “Z-score” is proposed to facilitate pertinent information propagation and capture dynamic changes in network structures. Finally, a “Dynamic Graph Learning Framework for Asset Pricing” is proposed to combine both global and local representations of data into one end-to-end asset pricing model. Using graph attention mechanism and information diffusion function, the proposed model learns new connections for implicit networks and refines connections of explicit networks. Experimental analysis shows that the proposed model incorporates information from negative and positive connections, captures the network evolution of the equity market over time, and outperforms other state-of-the-art asset pricing and predictive machine learning models in stock return prediction. In a broader context, this is a pioneering work in FinTech, particularly in understanding complex financial market structures and developing explainable artificial intelligence models for finance applications. This work effectively demonstrates the application of machine learning to model financial networks, capture nonlinear interactions on data, and provide investors with powerful data-driven techniques for informed decision-making

    WiFi-Based Human Activity Recognition Using Attention-Based BiLSTM

    Get PDF
    Recently, significant efforts have been made to explore human activity recognition (HAR) techniques that use information gathered by existing indoor wireless infrastructures through WiFi signals without demanding the monitored subject to carry a dedicated device. The key intuition is that different activities introduce different multi-paths in WiFi signals and generate different patterns in the time series of channel state information (CSI). In this paper, we propose and evaluate a full pipeline for a CSI-based human activity recognition framework for 12 activities in three different spatial environments using two deep learning models: ABiLSTM and CNN-ABiLSTM. Evaluation experiments have demonstrated that the proposed models outperform state-of-the-art models. Also, the experiments show that the proposed models can be applied to other environments with different configurations, albeit with some caveats. The proposed ABiLSTM model achieves an overall accuracy of 94.03%, 91.96%, and 92.59% across the 3 target environments. While the proposed CNN-ABiLSTM model reaches an accuracy of 98.54%, 94.25% and 95.09% across those same environments

    Machine learning in portfolio management

    Get PDF
    Financial markets are difficult learning environments. The data generation process is time-varying, returns exhibit heavy tails and signal-to-noise ratio tends to be low. These contribute to the challenge of applying sophisticated, high capacity learning models in financial markets. Driven by recent advances of deep learning in other fields, we focus on applying deep learning in a portfolio management context. This thesis contains three distinct but related contributions to literature. First, we consider the problem of neural network training in a time-varying context. This results in a neural network that can adapt to a data generation process that changes over time. Second, we consider the problem of learning in noisy environments. We propose to regularise the neural network using a supervised autoencoder and show that this improves the generalisation performance of the neural network. Third, we consider the problem of quantifying forecast uncertainty in time-series with volatility clustering. We propose a unified framework for the quantification of forecast uncertainty that results in uncertainty estimates that closely match actual realised forecast errors in cryptocurrencies and U.S. stocks

    Recent Advances in Social Data and Artificial Intelligence 2019

    Get PDF
    The importance and usefulness of subjects and topics involving social data and artificial intelligence are becoming widely recognized. This book contains invited review, expository, and original research articles dealing with, and presenting state-of-the-art accounts pf, the recent advances in the subjects of social data and artificial intelligence, and potentially their links to Cyberspace

    Market Engineering

    Get PDF
    This open access book provides a broad range of insights on market engineering and information management. It covers topics like auctions, stock markets, electricity markets, the sharing economy, information and emotions in markets, smart decision-making in cities and other systems, and methodological approaches to conceptual modeling and taxonomy development. Overall, this book is a source of inspiration for everybody working on the vision of advancing the science of engineering markets and managing information for contributing to a bright, sustainable, digital world. Markets are powerful and extremely efficient mechanisms for coordinating individuals’ and organizations’ behavior in a complex, networked economy. Thus, designing, monitoring, and regulating markets is an essential task of today’s society. This task does not only derive from a purely economic point of view. Leveraging market forces can also help to tackle pressing social and environmental challenges. Moreover, markets process, generate, and reveal information. This information is a production factor and a valuable economic asset. In an increasingly digital world, it is more essential than ever to understand the life cycle of information from its creation and distribution to its use. Both markets and the flow of information should not arbitrarily emerge and develop based on individual, profit-driven actors. Instead, they should be engineered to serve best the whole society’s goals. This motivation drives the research fields of market engineering and information management. With this book, the editors and authors honor Professor Dr. Christof Weinhardt for his enormous and ongoing contribution to market engineering and information management research and practice. It was presented to him on the occasion of his sixtieth birthday in April 2021. Thank you very much, Christof, for so many years of cooperation, support, inspiration, and friendship
    • …
    corecore