182,924 research outputs found

    Shear-Induced Isotropic-to-Lamellar Transition in a Lattice-Gas Model of Ternary Amphiphilic Fluids

    Full text link
    Although shear-induced isotropic-to-lamellar transitions in ternary systems of oil, water and surfactant have been observed experimentally and predicted theoretically by simple models for some time now, their numerical simulation has not been achieved so far. In this work we demonstrate that a recently introduced hydrodynamic lattice-gas model of amphiphilic fluids is well suited for this purpose: the two-dimensional version of this model does indeed exhibit a shear-induced isotropic-to-lamellar phase transition.Comment: 17 pages, LaTeX with epsf and REVTeX, PostScript and EPS illustrations included. To appear in J. Phys. Cond. Ma

    Pedestrian demand modelling of large cities: an applied example from London

    Get PDF
    This paper introduces a methodology for the development of city wide pedestrian demand models and shows its application to London. The approach used for modelling is Multiple Regression Analysis of independent variables against the dependent variable of observed pedestrian flows. The test samples were from manual observation studies of average total pedestrian flow per hour on 237 sample sites. The model will provide predicted flow values for all 7,526 street segments in the 25 square kilometres of Central London. It has been independently validated by Transport for London and is being tested against further observation data. The longer term aim is to extend the model to the entire greater London area and to incorporate additional policy levers for use as a transport planning and evaluation tool

    An athletic approach to studying perception-action integration: Does sport-specific training, and the impact of injury, influence how individuals visually guide navigation?

    Get PDF
    The objective of this thesis was to investigate perception-action integration capabilities of individuals during a choice navigation task. This task assessed navigation strategies in open space while individuals avoided colliding with two vertical obstacles that created a body-scaled, horizontal gap, at three varying obstacle distances from the starting location (3m, 5m, 7m). The two studies completed in this thesis employed the same paradigm to assess the hypothesized group differences. Gaze behaviours and kinematics of navigation strategies were compared between: 1) athletes specifically trained in navigating in open space versus non-athletes; and 2) athletes with post-concussion syndrome (PCS) versus non-concussed, specifically trained athletes. Specifically trained athletes have been identified as demonstrating more successful perception-action integration in discrete motor tasks related to their sport (Mann et al., 2007; Vickers, 2007). However, whether these abilities translate to the continuous motor task of obstacle avoidance in open space was unknown. The purpose of Study 1 was to identify the influence of sport-specific training on navigating in open space (i.e. navigational strategies of large field sport athletes) compared to age-matched, non-athletes. It was hypothesized that specifically-trained athletes would demonstrate fewer, longer fixations, suggesting a more successful perception-action integration strategy (as defined by Mann et al., 2007), and would employ more sport-specific navigation strategies than non-athletes by maintaining their straight trajectory toward the goal (Fajen & Warren, 2003). Athletes were found to make fewer, longer fixations than non-athletes. However, no differences were observed between navigation strategies of the two groups, nor were any kinematic measures found to differ between groups. It can be concluded that athletes and non-athletes differentially obtain visual information to perform the same actions, suggesting that athletes and non-athletes differentially perform perception-action integration when navigating in open space. Future studies are required to identify sport-specific nuances of navigation (moving obstacles, running) to better identify athletic-related navigation strategies. Although athletic training can enhance perception-action integration strategies, sport-related injuries can hinder this process. Following a concussion, individuals experience deficits of perception-action integration that persist well beyond 30 days of recovery, post-concussion (Baker and Cinelli, 2014; Slobounov et al., 2006). These perception-action integration deficits may also exist in individual with postconcussion syndrome (PCS). The purpose of the Study 2 was to identify whether perception-action integration deficits persist with the persistent physical symptoms of concussion characteristic of PCS. The current study revealed that athletes with PCS did not differ from non-concussed athletes on any measure of visual fixation strategy, nor were they found to differ on any kinematic measure assessed. These findings suggest that in the context of the current paradigm, athletes with PCS have no perception-action integration deficit. In that, athletes with PCS may have adapted perception-action integration strategies to navigate with equal efficiency as a specifically-trained group of athletes or that the paradigm was not sensitive enough to identify these differences. Such findings suggest that more research is required to assess what, if any, perception-action integration deficits persist with persisting physical symptoms of PCS to better benefit rehabilitative procedures and outcomes for these individuals. Together, these studies add to what was previously known about perception-action integration, as it relates to navigation. Both studies assessed perception-action integration in unique populations that add to understanding of behavioural dynamics in the sport setting. Study 1 builds on a line of research assessing affordance theory and behavioural dynamics in sport (Fajen, Riley, & Turvey, 2008). The findings of this study suggest that although navigation strategies did not differ between specifically trained athletes and non-athletes, visual search strategies employed in task did. Such findings add to the understanding that sport-specific training influences perception-action integration, through our understanding of how athletes obtain visual information to perform actions. This thesis did not identify perception-action integration deficits in athletes with PCS. These findings suggest that the individuals in the present study likely adapted to their injury as they demonstrated equal ability in gaze and navigation strategies to specifically-trained athletes. As such, further research is required to assess the cognitive, motor, and sensory-motor deficits that may persist with the persisting physical symptoms of PCS. As individuals with PCS do not demonstrate similar visuomotor integration deficits as individuals with acute concussions (Baker & Cinelli, 2014), such individuals must be assessed and researched as a separate population

    Optimising the assessment of cerebral autoregulation from black box models

    No full text
    Cerebral autoregulation (CA) mechanisms maintain blood flow approximately stable despite changes in arterial blood pressure. Mathematical models that characterise this system have been used extensively in the quantitative assessment of function/impairment of CA. Using spontaneous fluctuations in arterial blood pressure (ABP) as input and cerebral blood flow velocity (CBFV) as output, the autoregulatory mechanism can be modelled using linear and non-linear approaches, from which indexes can be extracted to provide an overall assessment of CA. Previous studies have considered a single – or at most a couple of measures, making it difficult to compare the performance of different CA parameters. We compare the performance of established autoregulatory parameters and propose novel measures. The key objective is to identify which model and index can best distinguish between normal and impaired CA. To this end 26 recordings of ABP and CBFV from normocapnia and hypercapnia (which temporarily impairs CA) in 13 healthy adults were analysed. In the absence of a ‘gold’ standard for the study of dynamic CA, lower inter- and intra-subject variability of the parameters in relation to the difference between normo- and hypercapnia were considered as criteria for identifying improved measures of CA. Significantly improved performance compared to some conventional approaches was achieved, with the simplest method emerging as probably the most promising for future studies

    The Current Ability to Test Theories of Gravity with Black Hole Shadows

    Get PDF
    Our Galactic Center, Sagittarius A* (Sgr A*), is believed to harbour a supermassive black hole (BH), as suggested by observations tracking individual orbiting stars. Upcoming sub-millimetre very-long-baseline-interferometry (VLBI) images of Sgr A* carried out by the Event-Horizon-Telescope Collaboration (EHTC) are expected to provide critical evidence for the existence of this supermassive BH. We assess our present ability to use EHTC images to determine if they correspond to a Kerr BH as predicted by Einstein's theory of general relativity (GR) or to a BH in alternative theories of gravity. To this end, we perform general-relativistic magnetohydrodynamical (GRMHD) simulations and use general-relativistic radiative transfer (GRRT) calculations to generate synthetic shadow images of a magnetised accretion flow onto a Kerr BH. In addition, and for the first time, we perform GRMHD simulations and GRRT calculations for a dilaton BH, which we take as a representative solution of an alternative theory of gravity. Adopting the VLBI configuration from the 2017 EHTC campaign, we find that it could be extremely difficult to distinguish between BHs from different theories of gravity, thus highlighting that great caution is needed when interpreting BH images as tests of GR.Comment: Published in Nature Astronomy on 16.04.18 (including supplementary information); simulations at https://blackholecam.org/telling_bhs_apart
    • …
    corecore