18,756 research outputs found

    Visual Analysis of High-Dimensional Event Sequence Data via Dynamic Hierarchical Aggregation

    Full text link
    Temporal event data are collected across a broad range of domains, and a variety of visual analytics techniques have been developed to empower analysts working with this form of data. These techniques generally display aggregate statistics computed over sets of event sequences that share common patterns. Such techniques are often hindered, however, by the high-dimensionality of many real-world event sequence datasets because the large number of distinct event types within such data prevents effective aggregation. A common coping strategy for this challenge is to group event types together as a pre-process, prior to visualization, so that each group can be represented within an analysis as a single event type. However, computing these event groupings as a pre-process also places significant constraints on the analysis. This paper presents a dynamic hierarchical aggregation technique that leverages a predefined hierarchy of dimensions to computationally quantify the informativeness of alternative levels of grouping within the hierarchy at runtime. This allows users to dynamically explore the hierarchy to select the most appropriate level of grouping to use at any individual step within an analysis. Key contributions include an algorithm for interactively determining the most informative set of event groupings from within a large-scale hierarchy of event types, and a scatter-plus-focus visualization that supports interactive hierarchical exploration. While these contributions are generalizable to other types of problems, we apply them to high-dimensional event sequence analysis using large-scale event type hierarchies from the medical domain. We describe their use within a medical cohort analysis tool called Cadence, demonstrate an example in which the proposed technique supports better views of event sequence data, and report findings from domain expert interviews.Comment: To Appear in IEEE Transactions on Visualization and Computer Graphics (TVCG), Volume 26 Issue 1, 2020. Also part of proceedings for IEEE VAST 201

    Going Deeper into Action Recognition: A Survey

    Full text link
    Understanding human actions in visual data is tied to advances in complementary research areas including object recognition, human dynamics, domain adaptation and semantic segmentation. Over the last decade, human action analysis evolved from earlier schemes that are often limited to controlled environments to nowadays advanced solutions that can learn from millions of videos and apply to almost all daily activities. Given the broad range of applications from video surveillance to human-computer interaction, scientific milestones in action recognition are achieved more rapidly, eventually leading to the demise of what used to be good in a short time. This motivated us to provide a comprehensive review of the notable steps taken towards recognizing human actions. To this end, we start our discussion with the pioneering methods that use handcrafted representations, and then, navigate into the realm of deep learning based approaches. We aim to remain objective throughout this survey, touching upon encouraging improvements as well as inevitable fallbacks, in the hope of raising fresh questions and motivating new research directions for the reader

    Selection Bias Tracking and Detailed Subset Comparison for High-Dimensional Data

    Full text link
    The collection of large, complex datasets has become common across a wide variety of domains. Visual analytics tools increasingly play a key role in exploring and answering complex questions about these large datasets. However, many visualizations are not designed to concurrently visualize the large number of dimensions present in complex datasets (e.g. tens of thousands of distinct codes in an electronic health record system). This fact, combined with the ability of many visual analytics systems to enable rapid, ad-hoc specification of groups, or cohorts, of individuals based on a small subset of visualized dimensions, leads to the possibility of introducing selection bias--when the user creates a cohort based on a specified set of dimensions, differences across many other unseen dimensions may also be introduced. These unintended side effects may result in the cohort no longer being representative of the larger population intended to be studied, which can negatively affect the validity of subsequent analyses. We present techniques for selection bias tracking and visualization that can be incorporated into high-dimensional exploratory visual analytics systems, with a focus on medical data with existing data hierarchies. These techniques include: (1) tree-based cohort provenance and visualization, with a user-specified baseline cohort that all other cohorts are compared against, and visual encoding of the drift for each cohort, which indicates where selection bias may have occurred, and (2) a set of visualizations, including a novel icicle-plot based visualization, to compare in detail the per-dimension differences between the baseline and a user-specified focus cohort. These techniques are integrated into a medical temporal event sequence visual analytics tool. We present example use cases and report findings from domain expert user interviews.Comment: IEEE Transactions on Visualization and Computer Graphics (TVCG), Volume 26 Issue 1, 2020. Also part of proceedings for IEEE VAST 201

    Scalable visualization of event sequences

    Get PDF
    • …
    corecore