4,841 research outputs found

    Inviwo -- A Visualization System with Usage Abstraction Levels

    Full text link
    The complexity of today's visualization applications demands specific visualization systems tailored for the development of these applications. Frequently, such systems utilize levels of abstraction to improve the application development process, for instance by providing a data flow network editor. Unfortunately, these abstractions result in several issues, which need to be circumvented through an abstraction-centered system design. Often, a high level of abstraction hides low level details, which makes it difficult to directly access the underlying computing platform, which would be important to achieve an optimal performance. Therefore, we propose a layer structure developed for modern and sustainable visualization systems allowing developers to interact with all contained abstraction levels. We refer to this interaction capabilities as usage abstraction levels, since we target application developers with various levels of experience. We formulate the requirements for such a system, derive the desired architecture, and present how the concepts have been exemplary realized within the Inviwo visualization system. Furthermore, we address several specific challenges that arise during the realization of such a layered architecture, such as communication between different computing platforms, performance centered encapsulation, as well as layer-independent development by supporting cross layer documentation and debugging capabilities

    Interpretable deep learning for guided microstructure-property explorations in photovoltaics

    Get PDF
    The microstructure determines the photovoltaic performance of a thin film organic semiconductor film. The relationship between microstructure and performance is usually highly non-linear and expensive to evaluate, thus making microstructure optimization challenging. Here, we show a data-driven approach for mapping the microstructure to photovoltaic performance using deep convolutional neural networks. We characterize this approach in terms of two critical metrics, its generalizability (has it learnt a reasonable map?), and its intepretability (can it produce meaningful microstructure characteristics that influence its prediction?). A surrogate model that exhibits these two features of generalizability and intepretability is particularly useful for subsequent design exploration. We illustrate this by using the surrogate model for both manual exploration (that verifies known domain insight) as well as automated microstructure optimization. We envision such approaches to be widely applicable to a wide variety of microstructure-sensitive design problems

    Exploring the Impact of Morphology on the Properties of Biodegradable Nanoparticles and Their Diffusion in Complex Biological Medium

    Get PDF
    Nanoparticle morphology (size, shape, and composition) and surface chemistry are the determining factors underpinning the efficacy of such materials in therapeutic applications. The size, shape, and surface chemistry of a nanoparticle can strongly influence key properties such as interactions with diverse biological fluids and interfaces and, in turn, impact the delivery of bioactive cargo, modulating therapeutic performance. This is exemplified in ocular drug delivery, where potential therapeutics must navigate complex biological media such as the gel-like vitreal fluid and the retina. Biodegradable block copolymer amphiphiles are a robust tool for the engineering of various types of self-assembled nanoparticles with diverse morphologies ranging from spherical and tubular polymersomes to spherical and worm-like micelles. Here, we explore the effect of morphological features such as shape and surface chemistry upon the interactions of a series of copolymer nanoparticles with retinal (ARPE-19) cells and the release of a low solubility drug (dexamethasone) that is currently used in ocular therapy and study their diffusion in vitreous using ex vivo eyes. We demonstrate that both aspect ratio and surface chemistry of nanoparticles will influence their performance in terms of cell uptake, drug release, and diffusion with high aspect ratio shapes demonstrating enhanced properties in relation to their spherical counterparts.Peer reviewe

    Effect of Surfactant Architecture on Conformational Transitions of Conjugated Polyelectrolytes

    Get PDF
    Water soluble conjugated polyelectrolytes (CPEs), which fall under the category of conductive polymers, possess numerous advantages over other conductive materials for the fabrication of electronic devices. Namely, the processing of water soluble conjugated polyelectrolytes into thin film electronic devices is much less costly as compared to the processing of inorganic materials. Moreover, the handling of conjugated polyelectrolytes can be performed in a much more environmentally friendly manner than in the processing of other conjugated polymers because conjugated polyelectrolytes are water soluble, whereas other polymers will only dissolve in toxic organic solvents. The processing of electronic devices containing inorganic constituents such as copper indium gallium selenide (CIGS), is much more expensive and poses much greater environmental risks because toxic metals may be released into landfills or waterways upon cell disposal.75 Because conjugated polyelectrolytes enjoy an assortment of advantages over other materials for the manufacturing of thin film electronic devices, there is globally vested interest in the researching of their properties. Despite the fact that CPEs can serve as efficient electron transport mediums, devices such as organic solar cells cannot realize their highest efficiencies unless the morphology of CPEs is precisely controlled. Charged surfactants can electrostatically and ionically interact with CPEs, and when introduced in specific concentrations, molar ratios, and temperature ranges, will aid in a ‘coil to rod’ transition of the CPE, wherein polymer chains undergo intramolecular transitions to obtain rigid-rod morphologies. The kinetics and thermodynamics of the ‘coil to rod’ transition are heavily dependent upon the type(s) of charged surfactant complexed with the CPE (i.e. on the surfactant architecture). By performing UV/Vis Spectroscopy and Fluorometry on dilute polymer/surfactant solutions, Polarized Optical Microscopy (POM) and Small Angle X-Ray Scattering (SAXS) on high concentration polymer/surfactant solutions, and Differential Scanning Calorimetry (DSC) and X-Ray Diffraction (XRD) on solid-state polymer/surfactant samples, the role of various surfactant architectures on the kinetics and thermodynamics of the ‘coil to rod’ transition was studied. The liquid crystalline physical properties and the extent of solid state crystallinity were also investigated. Through an analysis of the data obtained from these various techniques, it was found that the ‘coil to rod’ transition is progressively favored when the alkyl chain length of a single tailed surfactant is sequentially increased, and that as the concentration of double-tailed surfactant increases, the ‘coil to rod’ transition is negated

    Synergy between public space politics and mobility strategies

    Get PDF
    ¿Hasta qué punto y en qué circunstancias movilidad, como aspecto funcional e inevitable del entorno humano, se puede convertir en un elemento afirmativo de espacio público dándole un nuevo significado y un valor añadido? Diálogo entre movilidad y espacio público se puede explicar mediante la comprensión de las estrategias de movilidad como partidario de la integración de diferentes lógicas urbanas, observando infraestructura como un elemento de configuración de espacio público y al cuestionar transporte como pivote del carácter e identidad de espacio público. El objetivo principal de esta discusión es la integración urbana y contextual de los sistemas de transporte vistos como confluencias de lógica urbana y lógica de transporte desarrolladas como una sola expresión. Armonizando esta paradoja es posible crear sinergias entre espacio público y transporte que ganan nuevas dimensiones.Up to which point and under which circumstances mobility, as a functional and an inevitable aspect of the human environment, can become an affirmative element of public space giving it a new significance and an additional value? Dialog between mobility and public space can be explained by understanding mobility strategies as a supporter of integration of different urban logics, by observing infrastructure as an element of public space configuration and by questioning transport as a pivot of public space character and identity. The main focus of this discussion is on mobility lines, specifically urban and contextual integration of transport systems seen as a crossroads between urban and transport logic, developed as a single expression. Harmonizing this paradox it is possible to create synergies between public space and mobility which gain new dimensions
    • …
    corecore