255,692 research outputs found

    How simple rules determine pedestrian behavior and crowd disasters

    Full text link
    With the increasing size and frequency of mass events, the study of crowd disasters and the simulation of pedestrian flows have become important research areas. Yet, even successful modeling approaches such as those inspired by Newtonian force models are still not fully consistent with empirical observations and are sometimes hard to calibrate. Here, a novel cognitive science approach is proposed, which is based on behavioral heuristics. We suggest that, guided by visual information, namely the distance of obstructions in candidate lines of sight, pedestrians apply two simple cognitive procedures to adapt their walking speeds and directions. While simpler than previous approaches, this model predicts individual trajectories and collective patterns of motion in good quantitative agreement with a large variety of empirical and experimental data. This includes the emergence of self-organization phenomena, such as the spontaneous formation of unidirectional lanes or stop-and-go waves. Moreover, the combination of pedestrian heuristics with body collisions generates crowd turbulence at extreme densities-a phenomenon that has been observed during recent crowd disasters. By proposing an integrated treatment of simultaneous interactions between multiple individuals, our approach overcomes limitations of current physics-inspired pair interaction models. Understanding crowd dynamics through cognitive heuristics is therefore not only crucial for a better preparation of safe mass events. It also clears the way for a more realistic modeling of collective social behaviors, in particular of human crowds and biological swarms. Furthermore, our behavioral heuristics may serve to improve the navigation of autonomous robots.Comment: Article accepted for publication in PNA

    A Visual Formalism for Interacting Systems

    Full text link
    Interacting systems are increasingly common. Many examples pervade our everyday lives: automobiles, aircraft, defense systems, telephone switching systems, financial systems, national governments, and so on. Closer to computer science, embedded systems and Systems of Systems are further examples of interacting systems. Common to all of these is that some "whole" is made up of constituent parts, and these parts interact with each other. By design, these interactions are intentional, but it is the unintended interactions that are problematic. The Systems of Systems literature uses the terms "constituent systems" and "constituents" to refer to systems that interact with each other. That practice is followed here. This paper presents a visual formalism, Swim Lane Event-Driven Petri Nets, that is proposed as a basis for Model-Based Testing (MBT) of interacting systems. In the absence of available tools, this model can only support the offline form of Model-Based Testing.Comment: In Proceedings MBT 2015, arXiv:1504.0192

    Action Recognition in Videos: from Motion Capture Labs to the Web

    Full text link
    This paper presents a survey of human action recognition approaches based on visual data recorded from a single video camera. We propose an organizing framework which puts in evidence the evolution of the area, with techniques moving from heavily constrained motion capture scenarios towards more challenging, realistic, "in the wild" videos. The proposed organization is based on the representation used as input for the recognition task, emphasizing the hypothesis assumed and thus, the constraints imposed on the type of video that each technique is able to address. Expliciting the hypothesis and constraints makes the framework particularly useful to select a method, given an application. Another advantage of the proposed organization is that it allows categorizing newest approaches seamlessly with traditional ones, while providing an insightful perspective of the evolution of the action recognition task up to now. That perspective is the basis for the discussion in the end of the paper, where we also present the main open issues in the area.Comment: Preprint submitted to CVIU, survey paper, 46 pages, 2 figures, 4 table

    Visual Model-Driven Design, Verification and Implementation of Security Protocols

    Get PDF
    A novel visual model-driven approach to security protocol design, verification, and implementation is presented in this paper. User-friendly graphical models are combined with rigorous formal methods to enable protocol verification and sound automatic code generation. Domain-specific abstractions keep the graphical models simple, yet powerful enough to represent complex, realistic protocols such as SSH. The main contribution is to bring together aspects that were only partially available or not available at all in previous proposal

    A Neural Model of Visually Guided Steering, Obstacle Avoidance, and Route Selection

    Full text link
    A neural model is developed to explain how humans can approach a goal object on foot while steering around obstacles to avoid collisions in a cluttered environment. The model uses optic flow from a 3D virtual reality environment to determine the position of objects based on motion discontinuities, and computes heading direction, or the direction of self-motion, from global optic flow. The cortical representation of heading interacts with the representations of a goal and obstacles such that the goal acts as an attractor of heading, while obstacles act as repellers. In addition the model maintains fixation on the goal object by generating smooth pursuit eye movements. Eye rotations can distort the optic flow field, complicating heading perception, and the model uses extraretinal signals to correct for this distortion and accurately represent heading. The model explains how motion processing mechanisms in cortical areas MT, MST, and posterior parietal cortex can be used to guide steering. The model quantitatively simulates human psychophysical data about visually-guided steering, obstacle avoidance, and route selection.Air Force Office of Scientific Research (F4960-01-1-0397); National Geospatial-Intelligence Agency (NMA201-01-1-2016); National Science Foundation (SBE-0354378); Office of Naval Research (N00014-01-1-0624

    Understanding of Object Manipulation Actions Using Human Multi-Modal Sensory Data

    Full text link
    Object manipulation actions represent an important share of the Activities of Daily Living (ADLs). In this work, we study how to enable service robots to use human multi-modal data to understand object manipulation actions, and how they can recognize such actions when humans perform them during human-robot collaboration tasks. The multi-modal data in this study consists of videos, hand motion data, applied forces as represented by the pressure patterns on the hand, and measurements of the bending of the fingers, collected as human subjects performed manipulation actions. We investigate two different approaches. In the first one, we show that multi-modal signal (motion, finger bending and hand pressure) generated by the action can be decomposed into a set of primitives that can be seen as its building blocks. These primitives are used to define 24 multi-modal primitive features. The primitive features can in turn be used as an abstract representation of the multi-modal signal and employed for action recognition. In the latter approach, the visual features are extracted from the data using a pre-trained image classification deep convolutional neural network. The visual features are subsequently used to train the classifier. We also investigate whether adding data from other modalities produces a statistically significant improvement in the classifier performance. We show that both approaches produce a comparable performance. This implies that image-based methods can successfully recognize human actions during human-robot collaboration. On the other hand, in order to provide training data for the robot so it can learn how to perform object manipulation actions, multi-modal data provides a better alternative
    corecore