17,059 research outputs found

    Vision-only fully automated driving in dynamic mixed-traffic scenarios

    Get PDF
    In this work an overview of the local motion planning and dynamic perception framework within the V-Charge project is presented. This framework enables the V-Charge car to autonomously navigate in dynamic mixed-traffic scenarios. Other traffic participants are detected, classified and tracked from a combination of stereo and wide-angle monocular cameras. Predictions of their future movements are generated utilizing infrastructure information. Safe motion plans are acquired with a system-compliant sampling-based local motion planner. We show the navigation performance of this vision-only autonomous vehicle in both simulation and real-world experiments

    Dynamic Occupancy Grid Prediction for Urban Autonomous Driving: A Deep Learning Approach with Fully Automatic Labeling

    Full text link
    Long-term situation prediction plays a crucial role in the development of intelligent vehicles. A major challenge still to overcome is the prediction of complex downtown scenarios with multiple road users, e.g., pedestrians, bikes, and motor vehicles, interacting with each other. This contribution tackles this challenge by combining a Bayesian filtering technique for environment representation, and machine learning as long-term predictor. More specifically, a dynamic occupancy grid map is utilized as input to a deep convolutional neural network. This yields the advantage of using spatially distributed velocity estimates from a single time step for prediction, rather than a raw data sequence, alleviating common problems dealing with input time series of multiple sensors. Furthermore, convolutional neural networks have the inherent characteristic of using context information, enabling the implicit modeling of road user interaction. Pixel-wise balancing is applied in the loss function counteracting the extreme imbalance between static and dynamic cells. One of the major advantages is the unsupervised learning character due to fully automatic label generation. The presented algorithm is trained and evaluated on multiple hours of recorded sensor data and compared to Monte-Carlo simulation
    • …
    corecore