362 research outputs found

    Humanoid Robots

    Get PDF
    For many years, the human being has been trying, in all ways, to recreate the complex mechanisms that form the human body. Such task is extremely complicated and the results are not totally satisfactory. However, with increasing technological advances based on theoretical and experimental researches, man gets, in a way, to copy or to imitate some systems of the human body. These researches not only intended to create humanoid robots, great part of them constituting autonomous systems, but also, in some way, to offer a higher knowledge of the systems that form the human body, objectifying possible applications in the technology of rehabilitation of human beings, gathering in a whole studies related not only to Robotics, but also to Biomechanics, Biomimmetics, Cybernetics, among other areas. This book presents a series of researches inspired by this ideal, carried through by various researchers worldwide, looking for to analyze and to discuss diverse subjects related to humanoid robots. The presented contributions explore aspects about robotic hands, learning, language, vision and locomotion

    Locomoção bípede adaptativa a partir de uma única demonstração usando primitivas de movimento

    Get PDF
    Doutoramento em Engenharia EletrotécnicaEste trabalho aborda o problema de capacidade de imitação da locomoção humana através da utilização de trajetórias de baixo nível codificadas com primitivas de movimento e utilizá-las para depois generalizar para novas situações, partindo apenas de uma demonstração única. Assim, nesta linha de pensamento, os principais objetivos deste trabalho são dois: o primeiro é analisar, extrair e codificar demonstrações efetuadas por um humano, obtidas por um sistema de captura de movimento de forma a modelar tarefas de locomoção bípede. Contudo, esta transferência não está limitada à simples reprodução desses movimentos, requerendo uma evolução das capacidades para adaptação a novas situações, assim como lidar com perturbações inesperadas. Assim, o segundo objetivo é o desenvolvimento e avaliação de uma estrutura de controlo com capacidade de modelação das ações, de tal forma que a demonstração única apreendida possa ser modificada para o robô se adaptar a diversas situações, tendo em conta a sua dinâmica e o ambiente onde está inserido. A ideia por detrás desta abordagem é resolver o problema da generalização a partir de uma demonstração única, combinando para isso duas estruturas básicas. A primeira consiste num sistema gerador de padrões baseado em primitivas de movimento utilizando sistemas dinâmicos (DS). Esta abordagem de codificação de movimentos possui propriedades desejáveis que a torna ideal para geração de trajetórias, tais como a possibilidade de modificar determinados parâmetros em tempo real, tais como a amplitude ou a frequência do ciclo do movimento e robustez a pequenas perturbações. A segunda estrutura, que está embebida na anterior, é composta por um conjunto de osciladores acoplados em fase que organizam as ações de unidades funcionais de forma coordenada. Mudanças em determinadas condições, como o instante de contacto ou impactos com o solo, levam a modelos com múltiplas fases. Assim, em vez de forçar o movimento do robô a situações pré-determinadas de forma temporal, o gerador de padrões de movimento proposto explora a transição entre diferentes fases que surgem da interação do robô com o ambiente, despoletadas por eventos sensoriais. A abordagem proposta é testada numa estrutura de simulação dinâmica, sendo que várias experiências são efetuadas para avaliar os métodos e o desempenho dos mesmos.This work addresses the problem of learning to imitate human locomotion actions through low-level trajectories encoded with motion primitives and generalizing them to new situations from a single demonstration. In this line of thought, the main objectives of this work are twofold: The first is to analyze, extract and encode human demonstrations taken from motion capture data in order to model biped locomotion tasks. However, transferring motion skills from humans to robots is not limited to the simple reproduction, but requires the evaluation of their ability to adapt to new situations, as well as to deal with unexpected disturbances. Therefore, the second objective is to develop and evaluate a control framework for action shaping such that the single-demonstration can be modulated to varying situations, taking into account the dynamics of the robot and its environment. The idea behind the approach is to address the problem of generalization from a single-demonstration by combining two basic structures. The first structure is a pattern generator system consisting of movement primitives learned and modelled by dynamical systems (DS). This encoding approach possesses desirable properties that make them well-suited for trajectory generation, namely the possibility to change parameters online such as the amplitude and the frequency of the limit cycle and the intrinsic robustness against small perturbations. The second structure, which is embedded in the previous one, consists of coupled phase oscillators that organize actions into functional coordinated units. The changing contact conditions plus the associated impacts with the ground lead to models with multiple phases. Instead of forcing the robot’s motion into a predefined fixed timing, the proposed pattern generator explores transition between phases that emerge from the interaction of the robot system with the environment, triggered by sensor-driven events. The proposed approach is tested in a dynamics simulation framework and several experiments are conducted to validate the methods and to assess the performance of a humanoid robot

    Reinforcement Learning Algorithms in Humanoid Robotics

    Get PDF

    Intelligent approaches in locomotion - a review

    Get PDF

    Motion representation with spiking neural networks for grasping and manipulation

    Get PDF
    Die Natur bedient sich Millionen von Jahren der Evolution, um adaptive physikalische Systeme mit effizienten Steuerungsstrategien zu erzeugen. Im Gegensatz zur konventionellen Robotik plant der Mensch nicht einfach eine Bewegung und führt sie aus, sondern es gibt eine Kombination aus mehreren Regelkreisen, die zusammenarbeiten, um den Arm zu bewegen und ein Objekt mit der Hand zu greifen. Mit der Forschung an humanoiden und biologisch inspirierten Robotern werden komplexe kinematische Strukturen und komplizierte Aktor- und Sensorsysteme entwickelt. Diese Systeme sind schwierig zu steuern und zu programmieren, und die klassischen Methoden der Robotik können deren Stärken nicht immer optimal ausnutzen. Die neurowissenschaftliche Forschung hat große Fortschritte beim Verständnis der verschiedenen Gehirnregionen und ihrer entsprechenden Funktionen gemacht. Dennoch basieren die meisten Modelle auf groß angelegten Simulationen, die sich auf die Reproduktion der Konnektivität und der statistischen neuronalen Aktivität konzentrieren. Dies öffnet eine Lücke bei der Anwendung verschiedener Paradigmen, um Gehirnmechanismen und Lernprinzipien zu validieren und Funktionsmodelle zur Steuerung von Robotern zu entwickeln. Ein vielversprechendes Paradigma ist die ereignis-basierte Berechnung mit SNNs. SNNs fokussieren sich auf die biologischen Aspekte von Neuronen und replizieren deren Arbeitsweise. Sie sind für spike- basierte Kommunikation ausgelegt und ermöglichen die Erforschung von Mechanismen des Gehirns für das Lernen mittels neuronaler Plastizität. Spike-basierte Kommunikation nutzt hoch parallelisierten Hardware-Optimierungen mittels neuromorpher Chips, die einen geringen Energieverbrauch und schnelle lokale Operationen ermöglichen. In dieser Arbeit werden verschiedene SNNs zur Durchführung von Bewegungss- teuerung für Manipulations- und Greifaufgaben mit einem Roboterarm und einer anthropomorphen Hand vorgestellt. Diese basieren auf biologisch inspirierten funktionalen Modellen des menschlichen Gehirns. Ein Motor-Primitiv wird auf parametrische Weise mit einem Aktivierungsparameter und einer Abbildungsfunktion auf die Roboterkinematik übertragen. Die Topologie des SNNs spiegelt die kinematische Struktur des Roboters wider. Die Steuerung des Roboters erfolgt über das Joint Position Interface. Um komplexe Bewegungen und Verhaltensweisen modellieren zu können, werden die Primitive in verschiedenen Schichten einer Hierarchie angeordnet. Dies ermöglicht die Kombination und Parametrisierung der Primitiven und die Wiederverwendung von einfachen Primitiven für verschiedene Bewegungen. Es gibt verschiedene Aktivierungsmechanismen für den Parameter, der ein Motorprimitiv steuert — willkürliche, rhythmische und reflexartige. Außerdem bestehen verschiedene Möglichkeiten neue Motorprimitive entweder online oder offline zu lernen. Die Bewegung kann entweder als Funktion modelliert oder durch Imitation der menschlichen Ausführung gelernt werden. Die SNNs können in andere Steuerungssysteme integriert oder mit anderen SNNs kombiniert werden. Die Berechnung der inversen Kinematik oder die Validierung von Konfigurationen für die Planung ist nicht erforderlich, da der Motorprimitivraum nur durchführbare Bewegungen hat und keine ungültigen Konfigurationen enthält. Für die Evaluierung wurden folgende Szenarien betrachtet, das Zeigen auf verschiedene Ziele, das Verfolgen einer Trajektorie, das Ausführen von rhythmischen oder sich wiederholenden Bewegungen, das Ausführen von Reflexen und das Greifen von einfachen Objekten. Zusätzlich werden die Modelle des Arms und der Hand kombiniert und erweitert, um die mehrbeinige Fortbewegung als Anwendungsfall der Steuerungsarchitektur mit Motorprimitiven zu modellieren. Als Anwendungen für einen Arm (3 DoFs) wurden die Erzeugung von Zeigebewegungen und das perzeptionsgetriebene Erreichen von Zielen modelliert. Zur Erzeugung von Zeigebewegun- gen wurde ein Basisprimitiv, das auf den Mittelpunkt einer Ebene zeigt, offline mit vier Korrekturprimitiven kombiniert, die eine neue Trajektorie erzeugen. Für das wahrnehmungsgesteuerte Erreichen eines Ziels werden drei Primitive online kombiniert unter Verwendung eines Zielsignals. Als Anwendungen für eine Fünf-Finger-Hand (9 DoFs) wurden individuelle Finger-aktivierungen und Soft-Grasping mit nachgiebiger Steuerung modelliert. Die Greif- bewegungen werden mit Motor-Primitiven in einer Hierarchie modelliert, wobei die Finger-Primitive die Synergien zwischen den Gelenken und die Hand-Primitive die unterschiedlichen Affordanzen zur Koordination der Finger darstellen. Für jeden Finger werden zwei Reflexe hinzugefügt, zum Aktivieren oder Stoppen der Bewegung bei Kontakt und zum Aktivieren der nachgiebigen Steuerung. Dieser Ansatz bietet enorme Flexibilität, da Motorprimitive wiederverwendet, parametrisiert und auf unterschiedliche Weise kombiniert werden können. Neue Primitive können definiert oder gelernt werden. Ein wichtiger Aspekt dieser Arbeit ist, dass im Gegensatz zu Deep Learning und End-to-End-Lernmethoden, keine umfangreichen Datensätze benötigt werden, um neue Bewegungen zu lernen. Durch die Verwendung von Motorprimitiven kann der gleiche Modellierungsansatz für verschiedene Roboter verwendet werden, indem die Abbildung der Primitive auf die Roboterkinematik neu definiert wird. Die Experimente zeigen, dass durch Motor- primitive die Motorsteuerung für die Manipulation, das Greifen und die Lokomotion vereinfacht werden kann. SNNs für Robotikanwendungen ist immer noch ein Diskussionspunkt. Es gibt keinen State-of-the-Art-Lernalgorithmus, es gibt kein Framework ähnlich dem für Deep Learning, und die Parametrisierung von SNNs ist eine Kunst. Nichtsdestotrotz können Robotikanwendungen - wie Manipulation und Greifen - Benchmarks und realistische Szenarien liefern, um neurowissenschaftliche Modelle zu validieren. Außerdem kann die Robotik die Möglichkeiten der ereignis- basierten Berechnung mit SNNs und neuromorpher Hardware nutzen. Die physikalis- che Nachbildung eines biologischen Systems, das vollständig mit SNNs implementiert und auf echten Robotern evaluiert wurde, kann neue Erkenntnisse darüber liefern, wie der Mensch die Motorsteuerung und Sensorverarbeitung durchführt und wie diese in der Robotik angewendet werden können. Modellfreie Bewegungssteuerungen, inspiriert von den Mechanismen des menschlichen Gehirns, können die Programmierung von Robotern verbessern, indem sie die Steuerung adaptiver und flexibler machen

    A Posture Sequence Learning System for an Anthropomorphic Robotic Hand

    Get PDF
    The paper presents a cognitive architecture for posture learning of an anthropomorphic robotic hand. Our approach is aimed to allow the robotic system to perform complex perceptual operations, to interact with a human user and to integrate the perceptions by a cognitive representation of the scene and the observed actions. The anthropomorphic robotic hand imitates the gestures acquired by the vision system in order to learn meaningful movements, to build its knowledge by different conceptual spaces and to perform complex interaction with the human operator
    corecore