201 research outputs found

    Real-time Coordinate Estimation for Self-Localization of the Humanoid Robot Soccer BarelangFC

    Get PDF
    In implementation, of the humanoid robot soccer consists of more than three robots when played soccer on the field. All the robots needed to be played the soccer as human done such as seeking, chasing, dribbling and kicking the ball. To do all of these commands, it is required a real-time localization system so that each robot will understand not only the robot position itself but also the other robots and even the object on the field’s environment. However, in real-time implementation and due to the limited ability of the robot computation, it is necessary to determine a method which has fast computation and able to save much memory. Therefore, in this paper we presented a real-time localization implementation method using the odometry and Monte Carlo Localization (MCL) method. In order to verify the performance of this method, some experiment has been carried out in real-time application. From the experimental result, the proposed method able to estimate the coordinate of each robot position in X and Y position on the field.Dalam implementasinya, robot humanoid soccer terdiri lebih dari tiga robot di lapangan ketika sedang bermain bola. Semua robot diharapkan dapat memainkan sepak bola seperti manusia seperti mencari, mengejar, menggiring bola dan menendang bola. Untuk melakukan semua perintah tersebut, diperlukan sistem lokalisasi real-time sehingga setiap robot tidak hanya memahami posisi robotnya sendiri tetapi juga robot-robot lain bahkan objek yang berada di sekitar lapangan. Namun dalam implementasi real-time dan karena keterbatasan kemampuan komputasi robot, diperlukan suatu metode komputasi yang cepat dan mampu menghemat banyak memori. Oleh karena itu, dalam makalah ini menyajikan metode implementasi lokalisasi real-time dengan menggunakan metode odometry and Monte Carlo Localization (MCL). Untuk memverifikasi kinerja metode ini, beberapa percobaan telah dilakukan dalam aplikasi real-time. Dari hasil percobaan, metode yang diusulkan mampu mengestimasi koordinat posisi robot pada posisi X dan Y di lapangan ketika sedang bermain bola

    Online Visual Robot Tracking and Identification using Deep LSTM Networks

    Full text link
    Collaborative robots working on a common task are necessary for many applications. One of the challenges for achieving collaboration in a team of robots is mutual tracking and identification. We present a novel pipeline for online visionbased detection, tracking and identification of robots with a known and identical appearance. Our method runs in realtime on the limited hardware of the observer robot. Unlike previous works addressing robot tracking and identification, we use a data-driven approach based on recurrent neural networks to learn relations between sequential inputs and outputs. We formulate the data association problem as multiple classification problems. A deep LSTM network was trained on a simulated dataset and fine-tuned on small set of real data. Experiments on two challenging datasets, one synthetic and one real, which include long-term occlusions, show promising results.Comment: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, Canada, 2017. IROS RoboCup Best Paper Awar

    Tiny-YOLO distance measurement and object detection coordination system for the BarelangFC robot

    Get PDF
    A humanoid robot called BarelangFC was designed to take part in the Kontes Robot Indonesia (KRI) competition, in the robot coordination division. In this division, each robot is expected to recognize its opponents and to pass the ball towards a team member to establish coordination between the robots. In order to achieve this team coordination, a fast and accurate system is needed to detect and estimate the other robot’s position in real time. Moreover, each robot has to estimate its team members’ locations based on its camera reading, so that the ball can be passed without error. This research proposes a Tiny-YOLO deep learning method to detect the location of a team member robot and presents a real-time coordination system using a ZED camera. To establish the coordinate system, the distance between the robots was estimated using a trigonometric equation to ensure that the robot was able to pass the ball towards another robot. To verify our method, real-time experiments was carried out using an NVDIA Jetson NX Xavier, and the results showed that the robot could estimate the distance correctly before passing the ball toward another robot

    A reliability-based particle filter for humanoid robot self-localization in Robocup Standard Platform League

    Get PDF
    This paper deals with the problem of humanoid robot localization and proposes a new method for position estimation that has been developed for the RoboCup Standard Platform League environment. Firstly, a complete vision system has been implemented in the Nao robot platform that enables the detection of relevant field markers. The detection of field markers provides some estimation of distances for the current robot position. To reduce errors in these distance measurements, extrinsic and intrinsic camera calibration procedures have been developed and described. To validate the localization algorithm, experiments covering many of the typical situations that arise during RoboCup games have been developed: ranging from degradation in position estimation to total loss of position (due to falls, ‘kidnapped robot’, or penalization). The self-localization method developed is based on the classical particle filter algorithm. The main contribution of this work is a new particle selection strategy. Our approach reduces the CPU computing time required for each iteration and so eases the limited resource availability problem that is common in robot platforms such as Nao. The experimental results show the quality of the new algorithm in terms of localization and CPU time consumption.This work has been supported by the Spanish Science and Innovation Ministry (MICINN) under the CICYT project COBAMI: DPI2011-28507-C02-01/02. The responsibility for the content remains with the authors.Munera Sánchez, E.; Muñoz Alcobendas, M.; Blanes Noguera, F.; Benet Gilabert, G.; SimĂł Ten, JE. (2013). A reliability-based particle filter for humanoid robot self-localization in Robocup Standard Platform League. Sensors. 13(11):14954-14983. https://doi.org/10.3390/s131114954S1495414983131

    Location and Position Determination Algorithm For Humanoid Soccer Robot

    Get PDF
    The algorithm of location and position determination was designed for humanoid soccer robot. The robots have to be able to control the ball effectively on the field of Indonesian Robot Soccer Competition which has a size of 900 cm x 600 cm. The algorithm of location and position determination uses parameters, such as the goalpost’s thickness, the compass value, and the robot’s head servo value. The goalpost’s thickness is detected using The Centre of Gravity method. The width of the goalpost detected is analyzed using the principles of camera geometry to determine the distance between the robot and the goalpost. The tangent value of head servo’s tilt angle is used to determine the distance between the robot and the ball. The distance between robot-goalpost and the distance between robot-ball are processed with the difference of head servo’s pan angle and compass value using trigonometric formulas to determine the coordinates of the robot and the ball in the Cartesian coordinates

    ORB-SLAM based humanoid robot location and navigation system

    Get PDF
    Aiming at the indoor location and navigation problem of humanoid biped robot with complex motion structure, a humanoid biped robot localization and navigation system based on ORB-SLAM is designed. Firstly, the working principle of ORB-SLAM is analyzed, and it is improved to realize the function of missing map reading and generating dense point cloud map. Secondly, the dense point cloud map is converted to octomap, and then the conversion of 3D map to 2D map is completed. The SBPL planning library is improved to carry out the path planning of the robot, and the path planning based on the boundary exploration is realized. Finally, the experimental verification is carried out on the biped robot to verify the effectiveness of the location and navigation system design in the indoor environment
    • …
    corecore