4 research outputs found

    Design and Demonstration of a Two-Dimentional Test Bed for UAV Controller Evaluation

    Get PDF
    A three degree-of-freedom (DOF) planar test bed for Unmanned Aerial Vehicle (UAV) controller evaluation was built. The test-bed consists of an instrumented tether and an experimental twin-rotor, planar UAV mounted with a one DOF manipulator mounted below the UAV body. The tether was constructed to constrain the UAV under test to motion on the surface of a sphere. Experiments can be conducted through the tether, approximating motion in a vertical plane by a UAV under test. The tether provides the means to measure the position and attitude of the UAV under test. The experimental twin-rotor UAV and one-link on-board manipulator, were designed and built to explore a unified control strategy for Manipulator on VTOL Aircraft (MOVA), in which the interaction of UAV body dynamics with the manipulator motion is of primary interest. The dynamics of the propulsion unit was characterized through experiments, based on which a phase lead compensator was designed to improve the UAV frequency response. A \u27separate\u27 controller based on independent nonlinear control of the VTOL aircraft and PD linear control of the on-board manipulator was designed as a reference for comparison to the unified MOVA controller. Tests with the separate controller show the negative effect that a coupled manipulator can have on the UAV body motion, while the tests on MOVA show the potential benefit of explicit compensation of the UAV and manipulator interaction

    Motion Coordination of Aerial Vehicles

    Get PDF
    The coordinated motion control of multiple vehicles has emerged as a field of major interest in the control community. This thesis addresses two topics related to the control of a group of aerial vehicles: the output feedback attitude synchronization of rigid bodies and the formation control of Unmanned Aerial Vehicles (UAVs) capable of Vertical Take-Off and Landing (VTOL). The information flow between members of the team is assumed fixed and undirected. The first part of this thesis is devoted to the attitude synchronization of a group of spacecraft. In this context, we propose control schemes for the synchronization of a group of spacecraft to a predefined attitude trajectory without angular velocity measurements. We also propose some velocity-free consensus-seeking schemes allowing a group of spacecraft to align their attitudes, without reference trajectory specification. The second part of this thesis is devoted to the control of a group of VTOL-UAVs in the Special Euclidian group SE(3), i.e., position and orientation. In this context, we propose a few position coordination schemes without linear-velocity measurements. We also propose some solutions to the same problem in the presence of communication time-delays between aircraft. To solve the above mentioned problems, several new technical tools have been introduced in this thesis to overcome the deficiencies of the existing techniques in this field

    Reliable and Safe Motion Control of Unmanned Vehicles

    Get PDF
    Unmanned vehicles (UVs) are playing an increasingly significant role in modern daily life. In the past decades, numerous commercial, scientific, and military communities across the world are developing fully autonomous UVs for a variety of applications, such as environmental monitoring and surveillance, post-disaster search and rescue, border patrol, natural resources exploration, and experimental platforms for new technologies verification. The excessive opportunities and threats that come along with these diverse applications have created a niche demand for UVs to extend their capabilities to perform more sophisticated and hazardous missions with greater autonomy, lower costs of development and operation, improved personnel safety and security, extended operational range (reliability) and precision, as well as increased flexibility in sophisticated environments including so-called dirty, dull, harsh, and dangerous missions. In order to successfully and effectively execute missions and meet their corresponding performance criteria and overcome these ever-increasing challenges, greater autonomy together with more advanced reliable and safe motion control systems are required to offer the critical technologies for ensuring intelligent, safe, reliable, and efficient control of UVs in the presence of disturbances, actuator saturation, and even actuator faults, especially for practical applications. This thesis concentrates on the development of different reliable and safe motion control algorithms/strategies applicable to UVs, in particular, unmanned aerial vehicles (UAVs) and unmanned surface vehicles (USVs). A number of contributions pertaining to the fault detection and diagnosis (FDD), fault-tolerant control (FTC), disturbance estimation and compensation, and actuator saturation avoidance have been made in this thesis. In addition to the control problems, this thesis also presents several guidance-related contributions, including adaptive observer-based line-of-sight (LOS) guidance law, time-varying lookahead distance scheme, piecewise path switching criterion for guiding a single UV, as well as a proportional-integral (PI) type of leader-follower formation guidance strategy for a group of UVs
    corecore