11,238 research outputs found

    A Comparison of Visualisation Methods for Disambiguating Verbal Requests in Human-Robot Interaction

    Full text link
    Picking up objects requested by a human user is a common task in human-robot interaction. When multiple objects match the user's verbal description, the robot needs to clarify which object the user is referring to before executing the action. Previous research has focused on perceiving user's multimodal behaviour to complement verbal commands or minimising the number of follow up questions to reduce task time. In this paper, we propose a system for reference disambiguation based on visualisation and compare three methods to disambiguate natural language instructions. In a controlled experiment with a YuMi robot, we investigated real-time augmentations of the workspace in three conditions -- mixed reality, augmented reality, and a monitor as the baseline -- using objective measures such as time and accuracy, and subjective measures like engagement, immersion, and display interference. Significant differences were found in accuracy and engagement between the conditions, but no differences were found in task time. Despite the higher error rates in the mixed reality condition, participants found that modality more engaging than the other two, but overall showed preference for the augmented reality condition over the monitor and mixed reality conditions

    Multimodal fusion : gesture and speech input in augmented reality environment

    Get PDF
    Augmented Reality (AR) has the capability to interact with the virtual objects and physical objects simultaneously since it combines the real world with virtual world seamlessly. However, most AR interface applies conventional Virtual Reality (VR) interaction techniques without modification. In this paper we explore the multimodal fusion for AR with speech and hand gesture input. Multimodal fusion enables users to interact with computers through various input modalities like speech, gesture, and eye gaze. At the first stage to propose the multimodal interaction, the input modalities are decided to be selected before be integrated in an interface. The paper presents several related works about to recap the multimodal approaches until it recently has been one of the research trends in AR. It presents the assorted existing works in multimodal for VR and AR. In AR, multimodal considers as the solution to improve the interaction between the virtual and physical entities. It is an ideal interaction technique for AR applications since AR supports interactions in real and virtual worlds in the real-time. This paper describes the recent studies in AR developments that appeal gesture and speech inputs. It looks into multimodal fusion and its developments, followed by the conclusion.This paper will give a guideline on multimodal fusion on how to integrate the gesture and speech inputs in AR environment

    An Introduction to 3D User Interface Design

    Get PDF
    3D user interface design is a critical component of any virtual environment (VE) application. In this paper, we present a broad overview of three-dimensional (3D) interaction and user interfaces. We discuss the effect of common VE hardware devices on user interaction, as well as interaction techniques for generic 3D tasks and the use of traditional two-dimensional interaction styles in 3D environments. We divide most user interaction tasks into three categories: navigation, selection/manipulation, and system control. Throughout the paper, our focus is on presenting not only the available techniques, but also practical guidelines for 3D interaction design and widely held myths. Finally, we briefly discuss two approaches to 3D interaction design, and some example applications with complex 3D interaction requirements. We also present an annotated online bibliography as a reference companion to this article

    Design experiences of multimodal mixed reality interfaces

    Get PDF

    An Inertial Device-based User Interaction with Occlusion-free Object Handling in a Handheld Augmented Reality

    Get PDF
    Augmented Reality (AR) is a technology used to merge virtual objects with real environments in real-time. In AR, the interaction which occurs between the end-user and the AR system has always been the frequently discussed topic. In addition, handheld AR is a new approach in which it delivers enriched 3D virtual objects when a user looks through the device’s video camera. One of the most accepted handheld devices nowadays is the smartphones which are equipped with powerful processors and cameras for capturing still images and video with a range of sensors capable of tracking location, orientation and motion of the user. These modern smartphones offer a sophisticated platform for implementing handheld AR applications. However, handheld display provides interface with the interaction metaphors which are developed with head-mounted display attached along and it might restrict with hardware which is inappropriate for handheld. Therefore, this paper will discuss a proposed real-time inertial device-based interaction technique for 3D object manipulation. It also explains the methods used such for selection, holding, translation and rotation. It aims to improve the limitation in 3D object manipulation when a user can hold the device with both hands without requiring the need to stretch out one hand to manipulate the 3D object. This paper will also recap of previous works in the field of AR and handheld AR. Finally, the paper provides the experimental results to offer new metaphors to manipulate the 3D objects using handheld devices

    Designing for Mixed Reality Urban Exploration

    Get PDF
    This paper introduces a design framework for mixed reality urban exploration (MRUE), based on a concrete implementation in a historical city. The framework integrates different modalities, such as virtual reality (VR), augmented reality (AR), and haptics-audio interfaces, as well as advanced features such as personalized recommendations, social exploration, and itinerary management. It permits to address a number of concerns regarding information overload, safety, and quality of the experience, which are not sufficiently tackled in traditional non-integrated approaches. This study presents an integrated mobile platform built on top of this framework and reflects on the lessons learned.Peer reviewe

    Enhanced visualisation of dance performance from automatically synchronised multimodal recordings

    Get PDF
    The Huawei/3DLife Grand Challenge Dataset provides multimodal recordings of Salsa dancing, consisting of audiovisual streams along with depth maps and inertial measurements. In this paper, we propose a system for augmented reality-based evaluations of Salsa dancer performances. An essential step for such a system is the automatic temporal synchronisation of the multiple modalities captured from different sensors, for which we propose efficient solutions. Furthermore, we contribute modules for the automatic analysis of dance performances and present an original software application, specifically designed for the evaluation scenario considered, which enables an enhanced dance visualisation experience, through the augmentation of the original media with the results of our automatic analyses
    corecore