20,867 research outputs found

    Near range path navigation using LGMD visual neural networks

    Get PDF
    In this paper, we proposed a method for near range path navigation for a mobile robot by using a pair of biologically inspired visual neural network – lobula giant movement detector (LGMD). In the proposed binocular style visual system, each LGMD processes images covering a part of the wide field of view and extracts relevant visual cues as its output. The outputs from the two LGMDs are compared and translated into executable motor commands to control the wheels of the robot in real time. Stronger signal from the LGMD in one side pushes the robot away from this side step by step; therefore, the robot can navigate in a visual environment naturally with the proposed vision system. Our experiments showed that this bio-inspired system worked well in different scenarios

    Vision-Based Road Detection in Automotive Systems: A Real-Time Expectation-Driven Approach

    Full text link
    The main aim of this work is the development of a vision-based road detection system fast enough to cope with the difficult real-time constraints imposed by moving vehicle applications. The hardware platform, a special-purpose massively parallel system, has been chosen to minimize system production and operational costs. This paper presents a novel approach to expectation-driven low-level image segmentation, which can be mapped naturally onto mesh-connected massively parallel SIMD architectures capable of handling hierarchical data structures. The input image is assumed to contain a distorted version of a given template; a multiresolution stretching process is used to reshape the original template in accordance with the acquired image content, minimizing a potential function. The distorted template is the process output.Comment: See http://www.jair.org/ for any accompanying file

    On Offline Evaluation of Vision-based Driving Models

    Get PDF
    Autonomous driving models should ideally be evaluated by deploying them on a fleet of physical vehicles in the real world. Unfortunately, this approach is not practical for the vast majority of researchers. An attractive alternative is to evaluate models offline, on a pre-collected validation dataset with ground truth annotation. In this paper, we investigate the relation between various online and offline metrics for evaluation of autonomous driving models. We find that offline prediction error is not necessarily correlated with driving quality, and two models with identical prediction error can differ dramatically in their driving performance. We show that the correlation of offline evaluation with driving quality can be significantly improved by selecting an appropriate validation dataset and suitable offline metrics. The supplementary video can be viewed at https://www.youtube.com/watch?v=P8K8Z-iF0cYComment: Published at the ECCV 2018 conferenc

    Airborne collision scenario flight tests: impact of angle measurement errors on reactive vision-based avoidance control

    Get PDF
    The future emergence of many types of airborne vehicles and unpiloted aircraft in the national airspace means collision avoidance is of primary concern in an uncooperative airspace environment. The ability to replicate a pilot’s see and avoid capability using cameras coupled with vision based avoidance control is an important part of an overall collision avoidance strategy. But unfortunately without range collision avoidance has no direct way to guarantee a level of safety. Collision scenario flight tests with two aircraft and a monocular camera threat detection and tracking system were used to study the accuracy of image-derived angle measurements. The effect of image-derived angle errors on reactive vision-based avoidance performance was then studied by simulation. The results show that whilst large angle measurement errors can significantly affect minimum ranging characteristics across a variety of initial conditions and closing speeds, the minimum range is always bounded and a collision never occurs

    Autonomous control of underground mining vehicles using reactive navigation

    Get PDF
    Describes how many of the navigation techniques developed by the robotics research community over the last decade may be applied to a class of underground mining vehicles (LHDs and haul trucks). We review the current state-of-the-art in this area and conclude that there are essentially two basic methods of navigation applicable. We describe an implementation of a reactive navigation system on a 30 tonne LHD which has achieved full-speed operation at a production mine
    • …
    corecore