1,438 research outputs found

    Vision Based Tracking and Interception of Moving Target by Mobile Robot Using Fuzzy Control

    Get PDF
    This paper presents a simple Fuzzy Logic Controllers (FLC) based control strategy to solve the tracking and interception problem of a moving target by a mobile robot equipped with a pan-tilt camera. Before sending commands to the mobile robot, video acquisition and image processing techniques are employed to estimate the target’s position in the image plane. The estimate coordinates are used by a fuzzy logic controller to control the pan-tilt camera angles. The objective is to ensure that the moving target is always at the middle of the camera image plane. A second FLC is used to control the robot orientation and to guarantee the tracking and interception of the target. The proposed pan-tilt camera and robot orientation controllers’ efficiency has been validated by simulation under Matlab using Virtual Reality Toolbox

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available

    A Pursuit-Rendezvous Approach for Robotic Tracking

    Get PDF

    Mobile robot visual navigation based on fuzzy logic and optical flow approaches

    Get PDF
    This paper presents the design of mobile robot visual navigation system in indoor environment based on fuzzy logic controllers (FLC) and optical flow (OF) approach. The proposed control system contains two Takagi–Sugeno fuzzy logic controllers for obstacle avoidance and goal seeking based on video acquisition and image processing algorithm. The first steering controller uses OF values calculated by Horn–Schunck algorithm to detect and estimate the positions of the obstacles. To extract information about the environment, the image is divided into two parts. The second FLC is used to guide the robot to the direction of the final destination. The efficiency of the proposed approach is verified in simulation using Visual Reality Toolbox. Simulation results demonstrate that the visual based control system allows autonomous navigation without any collision with obstacles.Peer ReviewedPostprint (author's final draft

    Moving object detection for interception by a humanoid robot

    Get PDF
    Interception of a moving object with an autonomous robot is an important problem in robotics. It has various application areas, such as in an industrial setting where products on a conveyor would be picked up by a robotic arm, in the military to halt intruders, in robotic soccer (where the robots try to get to the moving ball and try to block an opponent\u27s attempt to pass the ball), and in other challenging situations. Interception, in and of itself, is a complex task that demands a system with target recognition capability, proper navigation and actuation toward the moving target. There are numerous techniques for intercepting stationary targets and targets that move along a certain trajectory (linear, circular, and parabolic). However, much less research has been done for objects moving with an unknown and unpredictable trajectory, changing scale as well and having a different view point, where, additionally, the reference frame of the robot vision system is also dynamic. This study aims to find methods for object detection and tracking using vision system applicable for autonomous interception of a moving humanoid robot target by another humanoid robot. With the use of the implemented vision system, a robot is able to detect, track and intercept in a dynamic environment the moving target, taking into account the unique specifications of a humanoid robot, such as the kinematics of walking. The vision system combined object detection based on Haar/LBP feature classifiers trained on Boosted Cascades\u27\u27 and target contour tracking using optical flow techniques. The constant updates during navigation helped to intercept the object moving with unpredicted trajectory

    Autonomous Visual Servo Robotic Capture of Non-cooperative Target

    Get PDF
    This doctoral research develops and validates experimentally a vision-based control scheme for the autonomous capture of a non-cooperative target by robotic manipulators for active space debris removal and on-orbit servicing. It is focused on the final capture stage by robotic manipulators after the orbital rendezvous and proximity maneuver being completed. Two challenges have been identified and investigated in this stage: the dynamic estimation of the non-cooperative target and the autonomous visual servo robotic control. First, an integrated algorithm of photogrammetry and extended Kalman filter is proposed for the dynamic estimation of the non-cooperative target because it is unknown in advance. To improve the stability and precision of the algorithm, the extended Kalman filter is enhanced by dynamically correcting the distribution of the process noise of the filter. Second, the concept of incremental kinematic control is proposed to avoid the multiple solutions in solving the inverse kinematics of robotic manipulators. The proposed target motion estimation and visual servo control algorithms are validated experimentally by a custom built visual servo manipulator-target system. Electronic hardware for the robotic manipulator and computer software for the visual servo are custom designed and developed. The experimental results demonstrate the effectiveness and advantages of the proposed vision-based robotic control for the autonomous capture of a non-cooperative target. Furthermore, a preliminary study is conducted for future extension of the robotic control with consideration of flexible joints

    Stochastic Modeling for Mobile Manipulators

    Get PDF
    Mobile manipulators are valuable and highly desired in many fields, especially in industrial environments. However, determining the end effector position has been challenging for scenarios where the base moves at the same time that the arm follows commands to perform specific tasks. Earlier works have attempted to dynamically evaluate the problem of positioning error for mobile manipulators, but there is still room for further improvement. In this thesis, we devise a dynamical model that leverages stochastic search strategies for mobile manipulators. More specifically, we develop a dynamic model that estimates the position of the robot using an Unscented Kalman filter. Simulations using the Robot Operating System (ROS) and Gazebo were carried out to evaluate our model. Our results for the stochastic method show that it outperforms a deterministic approach (spiral search) under specific Kalman filter covariances of the process and observation noises. Compared to the state of the art, our proposed approach is more robust and efficient, proving to work under different arrangement scenarios with significant better performance
    • …
    corecore