3,142 research outputs found

    Proprioception-Based Grasping for Unknown Objects Using a Series-Elastic-Actuated Gripper

    Full text link
    Grasping unknown objects has been an active research topic for decades. Approaches range from using various sensors (e.g. vision, tactile) to gain information about the object, to building passively compliant hands that react appropriately to contacts. In this paper, we focus on grasping unknown objects using proprioception (the combination of joint position and torque sensing). Our hypothesis is that proprioception alone can be the basis for versatile performance, including multiple types of grasps for objects with multiple shapes and sizes, and transitions between grasps. Using a series-elastic-actuated gripper, we propose a method for performing stable fingertip grasps for unknown objects with unknown contacts, formulated as multi-input-multi-output (MIMO) control. We also show that the proprioceptive gripper can perform enveloping grasps, as well as the transition from fingertip grasps to enveloping grasps.Comment: 7 pages, 9 figures, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS

    Learning to Grasp Without Seeing

    Full text link
    Can a robot grasp an unknown object without seeing it? In this paper, we present a tactile-sensing based approach to this challenging problem of grasping novel objects without prior knowledge of their location or physical properties. Our key idea is to combine touch based object localization with tactile based re-grasping. To train our learning models, we created a large-scale grasping dataset, including more than 30 RGB frames and over 2.8 million tactile samples from 7800 grasp interactions of 52 objects. To learn a representation of tactile signals, we propose an unsupervised auto-encoding scheme, which shows a significant improvement of 4-9% over prior methods on a variety of tactile perception tasks. Our system consists of two steps. First, our touch localization model sequentially 'touch-scans' the workspace and uses a particle filter to aggregate beliefs from multiple hits of the target. It outputs an estimate of the object's location, from which an initial grasp is established. Next, our re-grasping model learns to progressively improve grasps with tactile feedback based on the learned features. This network learns to estimate grasp stability and predict adjustment for the next grasp. Re-grasping thus is performed iteratively until our model identifies a stable grasp. Finally, we demonstrate extensive experimental results on grasping a large set of novel objects using tactile sensing alone. Furthermore, when applied on top of a vision-based policy, our re-grasping model significantly boosts the overall accuracy by 10.6%. We believe this is the first attempt at learning to grasp with only tactile sensing and without any prior object knowledge

    Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection

    Full text link
    We describe a learning-based approach to hand-eye coordination for robotic grasping from monocular images. To learn hand-eye coordination for grasping, we trained a large convolutional neural network to predict the probability that task-space motion of the gripper will result in successful grasps, using only monocular camera images and independently of camera calibration or the current robot pose. This requires the network to observe the spatial relationship between the gripper and objects in the scene, thus learning hand-eye coordination. We then use this network to servo the gripper in real time to achieve successful grasps. To train our network, we collected over 800,000 grasp attempts over the course of two months, using between 6 and 14 robotic manipulators at any given time, with differences in camera placement and hardware. Our experimental evaluation demonstrates that our method achieves effective real-time control, can successfully grasp novel objects, and corrects mistakes by continuous servoing.Comment: This is an extended version of "Learning Hand-Eye Coordination for Robotic Grasping with Large-Scale Data Collection," ISER 2016. Draft modified to correct typo in Algorithm 1 and add a link to the publicly available datase

    Design of a Multi-Modal End-Effector and Grasping System: How Integrated Design helped win the Amazon Robotics Challenge

    Full text link
    We present the grasping system and design approach behind Cartman, the winning entrant in the 2017 Amazon Robotics Challenge. We investigate the design processes leading up to the final iteration of the system and describe the emergent solution by comparing it with key robotics design aspects. Following our experience, we propose a new design aspect, precision vs. redundancy, that should be considered alongside the previously proposed design aspects of modularity vs. integration, generality vs. assumptions, computation vs. embodiment and planning vs. feedback. We present the grasping system behind Cartman, the winning robot in the 2017 Amazon Robotics Challenge. The system makes strong use of redundancy in design by implementing complimentary tools, a suction gripper and a parallel gripper. This multi-modal end-effector is combined with three grasp synthesis algorithms to accommodate the range of objects provided by Amazon during the challenge. We provide a detailed system description and an evaluation of its performance before discussing the broader nature of the system with respect to the key aspects of robotic design as initially proposed by the winners of the first Amazon Picking Challenge. To address the principal nature of our grasping system and the reason for its success, we propose an additional robotic design aspect `precision vs. redundancy'. The full design of our robotic system, including the end-effector, is open sourced and available at http://juxi.net/projects/AmazonRoboticsChallenge/Comment: ACRV Technical Repor

    PointNetGPD: Detecting Grasp Configurations from Point Sets

    Full text link
    In this paper, we propose an end-to-end grasp evaluation model to address the challenging problem of localizing robot grasp configurations directly from the point cloud. Compared to recent grasp evaluation metrics that are based on handcrafted depth features and a convolutional neural network (CNN), our proposed PointNetGPD is lightweight and can directly process the 3D point cloud that locates within the gripper for grasp evaluation. Taking the raw point cloud as input, our proposed grasp evaluation network can capture the complex geometric structure of the contact area between the gripper and the object even if the point cloud is very sparse. To further improve our proposed model, we generate a larger-scale grasp dataset with 350k real point cloud and grasps with the YCB object set for training. The performance of the proposed model is quantitatively measured both in simulation and on robotic hardware. Experiments on object grasping and clutter removal show that our proposed model generalizes well to novel objects and outperforms state-of-the-art methods. Code and video are available at \href{https://lianghongzhuo.github.io/PointNetGPD}{https://lianghongzhuo.github.io/PointNetGPD}Comment: Accepted to ICRA 2019. Hongzhuo Liang and Xiaojian Ma contributed equally to this wor

    Annotation Scaffolds for Object Modeling and Manipulation

    Full text link
    We present and evaluate an approach for human-in-the-loop specification of shape reconstruction with annotations for basic robot-object interactions. Our method is based on the idea of model annotation: the addition of simple cues to an underlying object model to specify shape and delineate a simple task. The goal is to explore reducing the complexity of CAD-like interfaces so that novice users can quickly recover an object's shape and describe a manipulation task that is then carried out by a robot. The object modeling and interaction annotation capabilities are tested with a user study and compared against results obtained using existing approaches. The approach has been analyzed using a variety of shape comparison, grasping, and manipulation metrics, and tested with the PR2 robot platform, where it was shown to be successful.Comment: 31 pages, 46 Figure

    The CoSTAR Block Stacking Dataset: Learning with Workspace Constraints

    Full text link
    A robot can now grasp an object more effectively than ever before, but once it has the object what happens next? We show that a mild relaxation of the task and workspace constraints implicit in existing object grasping datasets can cause neural network based grasping algorithms to fail on even a simple block stacking task when executed under more realistic circumstances. To address this, we introduce the JHU CoSTAR Block Stacking Dataset (BSD), where a robot interacts with 5.1 cm colored blocks to complete an order-fulfillment style block stacking task. It contains dynamic scenes and real time-series data in a less constrained environment than comparable datasets. There are nearly 12,000 stacking attempts and over 2 million frames of real data. We discuss the ways in which this dataset provides a valuable resource for a broad range of other topics of investigation. We find that hand-designed neural networks that work on prior datasets do not generalize to this task. Thus, to establish a baseline for this dataset, we demonstrate an automated search of neural network based models using a novel multiple-input HyperTree MetaModel, and find a final model which makes reasonable 3D pose predictions for grasping and stacking on our dataset. The CoSTAR BSD, code, and instructions are available at https://sites.google.com/site/costardataset.Comment: This is a major revision refocusing the topic towards the JHU CoSTAR Block Stacking Dataset, workspace constraints, and a comparison of HyperTrees with hand-designed algorithms. 12 pages, 10 figures, and 3 table

    Real-Time, Highly Accurate Robotic Grasp Detection using Fully Convolutional Neural Networks with High-Resolution Images

    Full text link
    Robotic grasp detection for novel objects is a challenging task, but for the last few years, deep learning based approaches have achieved remarkable performance improvements, up to 96.1% accuracy, with RGB-D data. In this paper, we propose fully convolutional neural network (FCNN) based methods for robotic grasp detection. Our methods also achieved state-of-the-art detection accuracy (up to 96.6%) with state-of- the-art real-time computation time for high-resolution images (6-20ms per 360x360 image) on Cornell dataset. Due to FCNN, our proposed method can be applied to images with any size for detecting multigrasps on multiobjects. Proposed methods were evaluated using 4-axis robot arm with small parallel gripper and RGB-D camera for grasping challenging small, novel objects. With accurate vision-robot coordinate calibration through our proposed learning-based, fully automatic approach, our proposed method yielded 90% success rate.Comment: This work was superceded by arXiv:1812.0776

    Improving Data Efficiency of Self-supervised Learning for Robotic Grasping

    Full text link
    Given the task of learning robotic grasping solely based on a depth camera input and gripper force feedback, we derive a learning algorithm from an applied point of view to significantly reduce the amount of required training data. Major improvements in time and data efficiency are achieved by: Firstly, we exploit the geometric consistency between the undistorted depth images and the task space. Using a relative small, fully-convolutional neural network, we predict grasp and gripper parameters with great advantages in training as well as inference performance. Secondly, motivated by the small random grasp success rate of around 3%, the grasp space was explored in a systematic manner. The final system was learned with 23000 grasp attempts in around 60h, improving current solutions by an order of magnitude. For typical bin picking scenarios, we measured a grasp success rate of 96.6%. Further experiments showed that the system is able to generalize and transfer knowledge to novel objects and environments.Comment: Accepted for ICRA 201

    The Feeling of Success: Does Touch Sensing Help Predict Grasp Outcomes?

    Full text link
    A successful grasp requires careful balancing of the contact forces. Deducing whether a particular grasp will be successful from indirect measurements, such as vision, is therefore quite challenging, and direct sensing of contacts through touch sensing provides an appealing avenue toward more successful and consistent robotic grasping. However, in order to fully evaluate the value of touch sensing for grasp outcome prediction, we must understand how touch sensing can influence outcome prediction accuracy when combined with other modalities. Doing so using conventional model-based techniques is exceptionally difficult. In this work, we investigate the question of whether touch sensing aids in predicting grasp outcomes within a multimodal sensing framework that combines vision and touch. To that end, we collected more than 9,000 grasping trials using a two-finger gripper equipped with GelSight high-resolution tactile sensors on each finger, and evaluated visuo-tactile deep neural network models to directly predict grasp outcomes from either modality individually, and from both modalities together. Our experimental results indicate that incorporating tactile readings substantially improve grasping performance.Comment: 10 pages, accepted at the 1st Annual Conference on Robot Learning (CoRL
    • …
    corecore