69 research outputs found

    Diseño e implementación de un sensor híbrido de bajo costo para seguimiento de uniones en soldadura MIG

    Get PDF
    El presente trabajo muestra el desarrollo de un sistema de sensado híbrido de bajo costo para el seguimiento de uniones soldadas mediante el proceso GMAW, para la unión de planchas con junta a tope sin preparación de bordes y con junta tipo “V” de acero estructural ASTM A36. El desarrollo del sistema se dividió en cuatro fases como se indica a continuación: i) diseño mecánico, ii) diseño electrónico, iii) diseño de algoritmo de control para el seguimiento de juntas, e iv) integración del sistema con sus respectivas pruebas de laboratorio para verificar el funcionamiento correcto del sistema híbrido de sensado. El sistema contó con una interfaz de usuario gráfico (GUI) que ayudó al operador en la ejecución de la tarea de soldadura con el fin de obtener valores que se utilicen para el control de calidad del producto final soldado. El sistema de sensado híbrido permite ubicar y seguir la junta a soldar mediante un barrido de un diodo láser y la proyección del láser es capturada por una cámara digital. El sistema permite realizar inspección visual de la junta a través de una comparación de dimensión del cordón soldado. Además, controla la trayectoria y alineación de la antorcha de soldadura de un robot industrial por medio de un algoritmo de control que detecta la desalineación de la antorcha a través de la imagen capturada por la cámara. Finalmente, en la verificación del funcionamiento del sistema en tiempo real para el seguimiento de juntas e inspección de cordones de soldadura, se obtuvo como resultado un error mínimo de inspección en tiempo real de 0.18 mm en una junta a tope sin preparación, y junta en tipo “V”. En el sistema de seguimiento de juntas se obtuvo un error mínimo de 0.23 mm en la corrección cartesiana de desfase entre la antorcha de soldadura y el punto medio de la junta a soldar. Sobre los resultados se concluyó que los errores presentados en los resultados son mínimos, por lo que cumpliría con el requisito de corrección e inspección de soldadura en tiempo real, en acorde a los criterios de aceptación de inspección visual de la AWS D.1.Tesi

    Development of an acoustic emission monitoring system for crack detection during arc welding

    Get PDF
    Condition monitoring techniques are employed to monitor the structural integrity of a structure or the performance of a process. They are used to evaluate the structural integrity including damage initiation and propagation in engineering components. Early damage detection, maintenance and repairs can prevent structural failures, reduce maintenance and replacement costs, and guarantee that the structure runs securely during its service life. Acoustic emission (AE) technology is one of the condition monitoring methods widely employed in the industry. AE is an attractive option for condition monitoring purposes, the number of industrial applications where is used is rising. AE signals are elastic stress waves created by the fast release of energy from local sources occurring inside of materials, e.g. crack initiating and propagating. The AE technique includes recording this phenomenon with piezoelectric sensors, which is mounted on the surface of a structure. The signals are subsequently analysed in order to extract useful information about the nature of the AE source. AE has a high sensitivity to crack propagation and able to locate AE activity sources. It is a passive approach. It listens to the elastic stress waves releasing from material and able to operate in real-time monitoring to detect both cracks initiating and propagating. In this study, the use of AE technology to detect and monitor the possible occurrence of cracking during the arc welding process has been investigated. Real-time monitoring of the automated welding operation can help increase productivity and reliability while reducing cost. Monitoring of welding processes using AE technology remains a challenge, especially in the field of real-time data analysis, since a large amount of data is generated during monitoring. Also, during the welding process, many interferences can occur, causing difficulties in the identifications of the signals related to cracking events. A significant issue in the practical use of the AE technique is the existence of independent sources of a signal other than those related to cracking. These spurious AE signals make the discovering of the signals from the cracking activity difficult. Therefore, it is essential to discriminate the signal to identify the signal source. The need for practical data analysis is related to the three main objectives of monitoring, which is where this study has focused on. Firstly, the assessment of the noise levels and the characteristics of the signal from different materials and processes, secondly, the identification of signals arising from cracking and thirdly, the study of the feasibility of online monitoring using the AE features acquired in the initial study. Experimental work was carried out under controlled laboratory conditions for the acquisition of AE signals during arc welding processing. AE signals have been used for the assessment of noise levels as well as to identify the characteristics of the signals arising from different materials and processes. The features of the AE signals arising from cracking and other possible signal sources from the welding process and environment have also collected under laboratory conditions and analysed. In addition to the above mentioned aspects of the study, two novel signal processing methods based on signal correlation have been developed for efficiently evaluating data acquired from AE sensors. The major contributions of this research can be summarised as follows. The study of noise levels and filtering of different arc welding processes and materials is one of the areas where the original contribution is identified with respect to current knowledge. Another key contribution of the present study is the developing of a model for achieving source discrimination. The crack-related signals and other signals arising from the background are compared with each other. Two methods that have the potential to be used in a real-time monitoring system have been considered based on cross-correlation and pattern recognition. The present thesis has contributed to the improvement of the effectiveness of the AE technique for the detection of the possible occurrence of cracking during arc welding

    The application of high power lasers to the welding of tee section joints in ship production

    Get PDF
    PhD ThesisThe use of computers by naval architects has revolutionised ship design and -construction management. The use of high power laser technology could similarly revolutionise production processes to produce a quantum leap in productivity. Facilitating low heat input materials processing, the laser is suited to various cutting, welding and heat treatment applications in shipbuilding to increase productivity through improved product accuracy. From these processes, the Author has concentrated on the application of high power lasers to the welding of tee section joints - the most common joint configuration in ship structures - by a single sided method (skid welding) to give both the lowest possible heat input and greatest flexibility. -Using a lOkW laser, single pass fully penetrating skid welds may be produced for joints in plate of up to 15mm thick, but using this size of laser, production parameter envelopes to produce visually and structurally sound joints reduce in size as plate thickness increases to greater than 10mm. It is shown that fully penetrating laser skid welds produced in steel conventionally used for surface vessel construction are of superior structural quality to fillet welds as required by classification society rules. The work has shown that achieving process consistency in an automated production based skid welding workstation operating with existing levels of joint tolerance will be dependent not only on well designed laser and beam delivery harware but also on suitable on-line adaptive control systems. It has been demonstrated that by employing laser skid welding for steelwork fabrication, an increase in productivity can be gained, principally through increased processing speed and improved product accuracy.British Shipbuilders: The Science and Engineering Research Council

    A system for measurement and control of weld pool geometry in automatic arc welding

    Get PDF

    Neuro-fuzzy control modelling for gas metal arc welding process

    Get PDF
    Weld quality features are difficult or impossible to directly measure and control during welding, therefore indirect methods are necessary. Penetration is the most important geometric feature since in most applications it is the most significant factor affecting joint strength. Observation of penetration is only possible from the back face of the full penetration weld. In all other cases, since direct measurement of depth of penetration is not possible, real time control of penetration in the Gas Metal Arc Welding (GMAW) process by sensing conditions at the top surface of the joint is necessary. This continues to be a major area of interest for automation of the process. The objective of this research has been to develop an on-line intelligent process control model for GMAW, which can monitor and control the welding process. The model uses measurement of the temperature at a point on the surface of the workpiece to predict the depth of penetration being achieved, and to provide feedback for corrective adjustment of welding variables. Neural Network and Fuzzy Logic technologies have been used to achieve a reliable Neuro-Fuzzy control model for GMAW of a typical closed butt joint having 60° Vee edge preparation. The neural network model predicts the surface temperature expected for a set of fixed and adjustable welding variables when a prescribed level of penetration is achieved. This predicted temperature is compared with the actual surface temperature occurring during welding, as measured by an infrared sensor. If there is a difference between the measured temperature and the temperature predicted by the neural network, a fuzzy logic model will recommend changes to the adjustable welding variables necessary to achieve the desired weld penetration. Large scale experiments to obtain data for modelling and for model validation, and various other modelling studies are described. The results are used to establish the relationships between the output surface temperature measurement, welding variables and the corresponding achieved weld quality criteria. The effectiveness of the modelling methodology in dealing with fixed or variable root gap has also been tested. The result shows that the Neuro-fuzzy models are capable of providing control of penetration to an acceptable degree of accuracy, and a potential control response time, using modestly powerful computing hardware, of the order of one hundred milliseconds. This is more than adequate for real time control of GMAW. The application potential for control using these models is significant since, unlike many other top surface monitoring methods, it does not require sensing of the highly transient weld pool shape or surface

    Development of a real-time ultrasonic sensing system for automated and robotic welding

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.The implementation of robotic technology into welding processes is made difficult by the inherent process variables of part location, fit up, orientation and repeatability. Considering these aspects, to ensure weld reproducibility consistency and quality, advanced adaptive control techniques are essential. These involve not only the development of adequate sensors for seam tracking and joint recognition but also developments of overall machines with a level of artificial intelligence sufficient for automated welding. The development of such a prototype system which utilizes a manipulator arm, ultrasonic sensors and a transistorised welding power source is outlined. This system incorporates three essential aspects. It locates and tracks the welding seam ensuring correct positioning of the welding head relatively to the joint preparation. Additionally, it monitors the joint profile of the molten weld pool and modifies the relevant heat input parameters ensuring consistent penetration, joint filling and acceptable weld bead shape. Finally, it makes use of both the above information to reconstruct three-dimensional images of the weld pool silhouettes providing in-process inspection capabilities of the welded joints. Welding process control strategies have been incorporated into the system based on quantitative relationships between input parameters and weld bead shape configuration allowing real-time decisions to be made during the process of welding, without the need for operation intervention.British Technology Group (BTG

    Simulation-Oriented Methodology for Distortion Minimisation during Laser Beam Welding

    Get PDF
    Distortion is one of the drawbacks of any welding process, most of the time needed to be suppressed. One doubtful factor that could affect welding deformation is the shape of the liquid melt pool, which can be modified via variation of process parameters. The aim of this work was to numerically study the dynamics of the weld pool and its geometrical influence on welding distortion during laser beam welding. To achieve such a goal, a promising novel process simulation model, employed in investigating the keyhole and weld pool dynamics, has successfully been invented. The model incorporated all distinctive behaviours of the laser beam welding process. Moreover, identification of the correlation between the weld pool geometry and welding distortion as well as, eventually, weld pool shapes that favour distortion minimisation has also been simulatively demonstrated

    Simulation-Oriented Methodology for Distortion Minimisation during Laser Beam Welding

    Get PDF
    Distortion is one of the drawbacks of any welding process, most of the time needed to be suppressed. One doubtful factor that could affect welding deformation is the shape of the liquid melt pool, which can be modified via variation of process parameters. The aim of this work was to numerically study the dynamics of the weld pool and its geometrical influence on welding distortion during laser beam welding. To achieve such a goal, a promising novel process simulation model, employed in investigating the keyhole and weld pool dynamics, has successfully been invented. The model incorporated all distinctive behaviours of the laser beam welding process. Moreover, identification of the correlation between the weld pool geometry and welding distortion as well as, eventually, weld pool shapes that favour distortion minimisation has also been simulatively demonstrated

    Welding Processes

    Get PDF
    Despite the wide availability of literature on welding processes, a need exists to regularly update the engineering community on advancements in joining techniques of similar and dissimilar materials, in their numerical modeling, as well as in their sensing and control. In response to InTech's request to provide undergraduate and graduate students, welding engineers, and researchers with updates on recent achievements in welding, a group of 34 authors and co-authors from 14 countries representing five continents have joined to co-author this book on welding processes, free of charge to the reader. This book is divided into four sections: Laser Welding; Numerical Modeling of Welding Processes; Sensing of Welding Processes; and General Topics in Welding

    Engineering Principles

    Get PDF
    Over the last decade, there has been substantial development of welding technologies for joining advanced alloys and composites demanded by the evolving global manufacturing sector. The evolution of these welding technologies has been substantial and finds numerous applications in engineering industries. It is driven by our desire to reverse the impact of climate change and fuel consumption in several vital sectors. This book reviews the most recent developments in welding. It is organized into three sections: “Principles of Welding and Joining Technology,” “Microstructural Evolution and Residual Stress,” and “Applications of Welding and Joining.” Chapters address such topics as stresses in welding, tribology, thin-film metallurgical manufacturing processes, and mechanical manufacturing processes, as well as recent advances in welding and novel applications of these technologies for joining different materials such as titanium, aluminum, and magnesium alloys, ceramics, and plastics
    corecore