196 research outputs found

    Reconfigurable Vision Processing for Player Tracking in Indoor Sports

    Get PDF
    Ibraheem OW. Reconfigurable Vision Processing for Player Tracking in Indoor Sports. Bielefeld: Universität Bielefeld; 2018.Over the past decade, there has been an increasing growth of using vision-based systems for tracking players in sports. The tracking results are used to evaluate and enhance the performance of the players as well as to provide detailed information (e.g., on the players and team performance) to viewers. Player tracking using vision systems is a very challenging task due to the nature of sports games, which includes severe and frequent interactions (e.g., occlusions) between the players. Additionally, these vision systems have high computational demands since they require processing of a huge amount of video data based on the utilization of multiple cameras with high resolution and high frame rate. As a result, most of the existing systems based on general-purpose computers are not able to perform online real-time player tracking, but track the players offline using pre-recorded video files, limiting, e.g., direct feedback on the player performance during the game. In this thesis, a reconfigurable vision-based system for automatically tracking the players in indoor sports is presented. The proposed system targets player tracking for basketball and handball games. It processes the incoming video streams from GigE Vision cameras, achieving online real-time player tracking. The teams are identified and the players are detected based on the colors of their jerseys, using background subtraction, color thresholding, and graph clustering techniques. Moreover, the trackingby-detection approach is used to realize player tracking. FPGA technology is used to handle the compute-intensive vision processing tasks by implementing the video acquisition, video preprocessing, player segmentation, and team identification & player detection in hardware, while the less compute-intensive player tracking is performed on the CPU of a host-PC. Player detection and tracking are evaluated using basketball and handball datasets. The results of this work show that the maximum achieved frame rate for the FPGA implementation is 96.7 fps using a Xilinx Virtex-4 FPGA and 136.4 fps using a Virtex-7 device. The player tracking requires an average processing time of 2.53 ms per frame in a host-PC equipped with a 2.93 GHz Intel i7-870 CPU. As a result, the proposed reconfigurable system supports a maximum frame rate of 77.6 fps using two GigE Vision cameras with a resolution of 1392x1040 pixels each. Using the FPGA implementation, a speedup by a factor of 15.5 is achieved compared to an OpenCV-based software implementation in a host-PC. Additionally, the results show a high accuracy for player tracking. In particular, the achieved average precision and recall for player detection are up to 84.02% and 96.6%, respectively. For player tracking, the achieved average precision and recall are up to 94.85% and 94.72%, respectively. Furthermore, the proposed reconfigurable system achieves a 2.4 times higher performance per Watt than a software-based implementation (without FPGA support) for player tracking in a host-PC.Acknowledgments: I (Omar W. Ibraheem) would like to thank the German Academic Exchange Service (DAAD), the Congnitronics and Sensor Systems research group, and the Cluster of Excellence Cognitive Interaction Technology ‘CITEC’ (EXC 277) (Bielefeld University) not only for funding the work in this thesis, but also for all the help and support they gave to successfully finish my thesis

    Occupancy Analysis of the Outdoor Football Fields

    Get PDF

    A Novel and Effective Short Track Speed Skating Tracking System

    Get PDF
    This dissertation proposes a novel and effective system for tracking high-speed skaters. A novel registration method is employed to automatically discover key frames to build the panorama. Then, the homography between a frame and the real world rink can be generated accordingly. Aimed at several challenging tracking problems of short track skating, a novel multiple-objects tracking approach is proposed which includes: Gaussian mixture models (GMMs), evolving templates, constrained dynamical model, fuzzy model, multiple templates initialization, and evolution. The outputs of the system include spatialtemporal trajectories, velocity analysis, and 2D reconstruction animations. The tracking accuracy is about 10 cm (2 pixels). Such information is invaluable for sports experts. Experimental results demonstrate the effectiveness and robustness of the proposed system

    A query language for exploratory analysis of video-based tracking data in padel matches

    Get PDF
    Recent advances in sensor technologies, in particular video-based human detection, object tracking and pose estimation, have opened new possibilities for the automatic or semi-automatic per-frame annotation of sport videos. In the case of racket sports such as tennis and padel, state-of- the-art deep learning methods allow the robust detection and tracking of the players from a single video, which can be combined with ball tracking and shot recognition techniques to obtain a precise description of the play state at every frame. These data, which might include the court-space position of the players, their speeds, accelerations, shots and ball trajectories, can be exported in tabular format for further analysis. Unfortunately, the limitations of traditional table-based methods for analyzing such sport data are twofold. On the one hand, these methods cannot represent complex spatio-temporal queries in a compact, readable way, usable by sport analysts. On the other hand, traditional data visualization tools often fail to convey all the information available in the video (such as the precise body motion before, during and after the execution of a shot) and resulting plots only show a small portion of the available data. In this paper we address these two limitations by focusing on the analysis of video-based tracking data of padel matches. In particular, we propose a domain-specific query language to facilitate coaches and sport analysts to write queries in a very compact form. Additionally, we enrich the data visualization plots by linking each data item to a specific segment of the video so that analysts have full access to all the details related to the query. We demonstrate the flexibility of our system by collecting and converting into readable queries multiple tips and hypotheses on padel strategies extracted from the literature.Postprint (published version

    A Query Language for Exploratory Analysis of Video-Based Tracking Data in Padel Matches

    Get PDF
    Recent advances in sensor technologies, in particular video-based human detection, object tracking and pose estimation, have opened new possibilities for the automatic or semi-automatic per-frame annotation of sport videos. In the case of racket sports such as tennis and padel, state-of-the-art deep learning methods allow the robust detection and tracking of the players from a single video, which can be combined with ball tracking and shot recognition techniques to obtain a precise description of the play state at every frame. These data, which might include the court-space position of the players, their speeds, accelerations, shots and ball trajectories, can be exported in tabular format for further analysis. Unfortunately, the limitations of traditional table-based methods for analyzing such sport data are twofold. On the one hand, these methods cannot represent complex spatio-temporal queries in a compact, readable way, usable by sport analysts. On the other hand, traditional data visualization tools often fail to convey all the information available in the video (such as the precise body motion before, during and after the execution of a shot) and resulting plots only show a small portion of the available data. In this paper we address these two limitations by focusing on the analysis of video-based tracking data of padel matches. In particular, we propose a domain-specific query language to facilitate coaches and sport analysts to write queries in a very compact form. Additionally, we enrich the data visualization plots by linking each data item to a specific segment of the video so that analysts have full access to all the details related to the query. We demonstrate the flexibility of our system by collecting and converting into readable queries multiple tips and hypotheses on padel strategies extracted from the literature.This research was funded by the Spanish Ministry of Science and Innovation and FEDER funds, grant number PID2021-122136OB-C21, MCIN/AEI/10.13039/501100011033/FEDER, UE
    • …
    corecore