66,857 research outputs found

    Survey of computer vision algorithms and applications for unmanned aerial vehicles

    Get PDF
    This paper presents a complete review of computer vision algorithms and vision-based intelligent applications, that are developed in the field of the Unmanned Aerial Vehicles (UAVs) in the latest decade. During this time, the evolution of relevant technologies for UAVs; such as component miniaturization, the increase of computational capabilities, and the evolution of computer vision techniques have allowed an important advance in the development of UAVs technologies and applications. Particularly, computer vision technologies integrated in UAVs allow to develop cutting-edge technologies to cope with aerial perception difficulties; such as visual navigation algorithms, obstacle detection and avoidance and aerial decision-making. All these expert technologies have developed a wide spectrum of application for UAVs, beyond the classic military and defense purposes. Unmanned Aerial Vehicles and Computer Vision are common topics in expert systems, so thanks to the recent advances in perception technologies, modern intelligent applications are developed to enhance autonomous UAV positioning, or automatic algorithms to avoid aerial collisions, among others. Then, the presented survey is based on artificial perception applications that represent important advances in the latest years in the expert system field related to the Unmanned Aerial Vehicles. In this paper, the most significant advances in this field are presented, able to solve fundamental technical limitations; such as visual odometry, obstacle detection, mapping and localization, et cetera. Besides, they have been analyzed based on their capabilities and potential utility. Moreover, the applications and UAVs are divided and categorized according to different criteria.This research is supported by the Spanish Government through the CICYT projects (TRA2015-63708-R and TRA2013-48314-C3-1-R)

    Perancangan Dan Pengujian Piranti Pemantauan Visual Untuk Menentukan Volume Lalu Lintas

    Get PDF
    Intelligent Transportation System (ITS) applies information and communication technologies for transportation management. The problem in the study is the importance of computer vision tools to determine the volume of traffic on the highway. The design of computer vision device is performed using a static camera and the bounding box method for determining the traffic volume based on vehicle type, namely light vehicles, heavy vehicles (trucks) and motorcycles that are applied on the Gaussian Mixture Models (GMM). The classification is based on the pixel area of vehicle objects. The tests were carried out at Jalan T. Nyak Arief, Jambotape, Banda Aceh. The test results of the system achieved an accuracy of 79.32%

    From Software-Defined Vehicles to Self-Driving Vehicles: A Report on CPSS-Based Parallel Driving

    Get PDF
    On June 11th, 2017, the 28th IEEE Intelligent Vehicles Symposium (IV'2017) was held in Redondo Beach, California, USA. As one of the 8 workshops at IV'2017, the cyber-physical-social systems (CPSS)-based parallel driving (WS'08), organized by the State Key Laboratory for Management and Control of Complex Systems (SKL-MCCS), Institute of Automation, Chinese Academy of Sciences, China, Xi'an Jiaotong University, China, Tsinghua University, China, Indiana University-Purdue University Indianapolis, USA, and Cranfield University, U.K, has attracted both researchers and practitioners in intelligent vehicles. About 60-70 participants from various countries had extensive and deep discussions on definition, challenges and alternative solutions for CPSS-based parallel driving, and widely agreed that it is a novel paradigm of cloud-based automated driving technologies. Six speakers shared their ideas, studies, field applications, and vision for future along these emerging directions from software-defined vehicles to self-driving vehicles

    Work domain analysis and intelligent transport systems: Implications for vehicle design

    Get PDF
    This article presents a Work Domain Analysis (WDA) of the road transport system in Victoria, Australia. A series of driver information requirements and tasks that could potentially be supported through the use of Intelligent Transport Systems (ITS) are then extracted from the WDA. The potential use of ITS technologies to circumvent these information gaps and provide additional support to drivers is discussed. It is concluded that driver information requirements are currently not entirely satisfied by contemporary vehicle design and also that there are a number of driving tasks that could be further supported through the provision of supplementary systems within vehicles

    Intelligent automatic overtaking system using vision for vehicle detection

    Get PDF
    There is clear evidence that investment in intelligent transportation system technologies brings major social and economic benefits. Technological advances in the area of automatic systems in particular are becoming vital for the reduction of road deaths. We here describe our approach to automation of one the riskiest autonomous manœuvres involving vehicles – overtaking. The approach is based on a stereo vision system responsible for detecting any preceding vehicle and triggering the autonomous overtaking manœuvre. To this end, a fuzzy-logic based controller was developed to emulate how humans overtake. Its input is information from the vision system and from a positioning-based system consisting of a differential global positioning system (DGPS) and an inertial measurement unit (IMU). Its output is the generation of action on the vehicle’s actuators, i.e., the steering wheel and throttle and brake pedals. The system has been incorporated into a commercial Citroën car and tested on the private driving circuit at the facilities of our research center, CAR, with different preceding vehicles – a motorbike, car, and truck – with encouraging results
    corecore