493 research outputs found

    The value of remote sensing techniques in supporting effective extrapolation across multiple marine spatial scales

    Get PDF
    The reporting of ecological phenomena and environmental status routinely required point observations, collected with traditional sampling approaches to be extrapolated to larger reporting scales. This process encompasses difficulties that can quickly entrain significant errors. Remote sensing techniques offer insights and exceptional spatial coverage for observing the marine environment. This review provides guidance on (i) the structures and discontinuities inherent within the extrapolative process, (ii) how to extrapolate effectively across multiple spatial scales, and (iii) remote sensing techniques and data sets that can facilitate this process. This evaluation illustrates that remote sensing techniques are a critical component in extrapolation and likely to underpin the production of high-quality assessments of ecological phenomena and the regional reporting of environmental status. Ultimately, is it hoped that this guidance will aid the production of robust and consistent extrapolations that also make full use of the techniques and data sets that expedite this process

    Acoustic underwater target tracking methods using autonomous vehicles

    Get PDF
    Marine ecological research related to the increasing importance which the fisheries sector has reached so far, new methods and tools to study the biological components of our oceans are needed. The capacity to measure different population and environmental parameters of marine species allows a greater knowledge of the human impact, improving exploitation strategies of these resources. For example, the displacement capacity and mobility patterns are crucial to obtain the required knowledge for a sustainable management of fisheries. However, underwater localisation is one of the main problems which must be addressed in subsea exploration, where no Global Positioning System (GPS) is available. In addition to the traditional underwater localisation systems, such as Long BaseLine (LBL) or Ultra-Short BaseLine (USBL), new methods have been developed to increase navigation performance, flexibility, and to reduce deployment costs. For example, the Range-Only and Single-Beacon (ROSB) is based on an autonomous vehicle which localises and tracks different underwater targets using slant range measurements conducted by acoustic modems. In a moving target tracking scenario, the ROSB target tracking method can be seen as a Hidden Markov Model (HMM) problem. Using Bayes' rule, the probability distribution function of the HMM states can be solved by using different filtering methods. Accordingly, this thesis presents different strategies to improve the ROSB localisation and tracking methods for static and moving targets. Determining the optimal parameters to minimize acoustic energy use and search time, and to maximize the localisation accuracy and precision, is therefore one of the discussed aspects of ROSB. Thus, we present and compare different methods under different scenarios, both evaluated in simulations and field tests. The main mathematical notation and performance of each algorithm are presented, where the best practice has been derived. From a methodology point of view, this work advances the understanding of accuracy that can be achieved by using ROSB target tracking methods with autonomous vehicles. Moreover, whereas most of the work conducted during the last years has been focused on target tracking using acoustic modems, here we also present a novel method called the Area-Only Target Tracking (AOTT). This method works with commercially available acoustic tags, thereby reducing the costs and complexity over other tracking systems. These tags do not have bidirectional communication capabilities, and therefore, the ROSB techniques are not applicable. However, this method can be used to track small targets such as jellyfish due to the reduced tag's size. The methodology behind the area-only technique is shown, and results from the first field tests conducted in Monterey Bay area, California, are also presented.La biologia marina junt amb la importància que ha adquirit el sector pesquer, fa que es requereixin noves eines per a l’estudi dels nostres oceans. La capacitat de mesurar diferents poblacions i paràmetres ambientals d’espècies marines permet millorar el coneixement de l’impacte que l’ésser humà té sobre elles, millorant-ne els mètodes d’explotació. Per exemple, la capacitat de desplaçament i els patrons de moviment són crucials per obtenir el coneixement necessari per a una explotació sostenible de les pescaries involucrades. No obstant, la localització submarina és un dels principals problemes que s’ha de resoldre en l’explotació dels recursos submarins, on el sistema de posició global (GPS) no es pot utilitzar. A part dels mètodes tradicionals de posicionament submarí, com per exemple el Long Base-Line (LBL) o el Ultra-Short Base-Line (USBL), nous mètodes han estat desenvolupats per tal de millorar la navegació, la flexibilitat, i per reduir els costos de desplegament. Per exemple, el Range-Only and Single-Beacon (ROSB) utilitza un vehicle autònom per a localitzar i seguir diferents objectius submarins mitjançant mesures de rang realitzades a partir de mòdems acústics. En un escenari on l’objectiu a seguir és mòbil, el mètode ROSB de seguiment pot ser vist com a un problema de Hidden Markov Model (HMM). Aleshores, utilitzant la regla de Bayes, la funció de distribució de probabilitat dels estats del HMM pot ser solucionat utilitzant diferents mètodes de filtratge. Per tant, s’estudien diferents estratègies per millorar el sistema de localització i seguiment basat en ROSB, tant per objectius estàtics com mòbils. En aquesta tesis, presentem i comparem diferents mètodes utilitzant diferents escenaris, els quals s’han avaluat tant en simulacions com en proves de camp reals. A més, es presenten les principals notacions matemàtiques de cada algoritme i les millors pràctiques a utilitzar. Per tant, des d’un punt de vista metodològic, aquest treball fa un pas endavant en el coneixement de l’exactitud que es pot assolir utilitzant els mètodes de localització i seguiment d’espècies mitjançant algoritmes ROSB i vehicles autònoms. A més a més, mentre molts dels treballs realitzant durant els últims anys es centren en l’ús de mòdems acústics per al seguiment d’objectius submarins, en aquesta tesis es presenta un innovador mètode anomenat Area-Only Target Tracking (AOTT). Aquest sistema utilitza petites etiquetes acústiques comercials (tag), la qual cosa, redueix el cost i la complexitat en comparació amb els altres mètodes. Addicionalment, gràcies a l’ús d’aquests tags de dimensions reduïdes, aquest sistema permet seguir espècies marines com les meduses. La metodologia utilitzada per el mètode AOTT es mostra en aquesta tesis, on també es presenten els primers experiments realitzats a la badia de Monterey a Califòrnia

    Lossy compression and real-time geovisualization for ultra-low bandwidth telemetry from untethered underwater vehicles

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2008Oceanographic applications of robotics are as varied as the undersea environment itself. As underwater robotics moves toward the study of dynamic processes with multiple vehicles, there is an increasing need to distill large volumes of data from underwater vehicles and deliver it quickly to human operators. While tethered robots are able to communicate data to surface observers instantly, communicating discoveries is more difficult for untethered vehicles. The ocean imposes severe limitations on wireless communications; light is quickly absorbed by seawater, and tradeoffs between frequency, bitrate and environmental effects result in data rates for acoustic modems that are routinely as low as tens of bits per second. These data rates usually limit telemetry to state and health information, to the exclusion of mission-specific science data. In this thesis, I present a system designed for communicating and presenting science telemetry from untethered underwater vehicles to surface observers. The system's goals are threefold: to aid human operators in understanding oceanographic processes, to enable human operators to play a role in adaptively responding to mission-specific data, and to accelerate mission planning from one vehicle dive to the next. The system uses standard lossy compression techniques to lower required data rates to those supported by commercially available acoustic modems (O(10)-O(100) bits per second). As part of the system, a method for compressing time-series science data based upon the Discrete Wavelet Transform (DWT) is explained, a number of low-bitrate image compression techniques are compared, and a novel user interface for reviewing transmitted telemetry is presented. Each component is motivated by science data from a variety of actual Autonomous Underwater Vehicle (AUV) missions performed in the last year.National Science Foundation Center for Subsurface Sensing and Imaging (CenSSIS ERC

    Low-Cost Vision Based Autonomous Underwater Vehicle for Abyssal Ocean Ecosystem Research

    Full text link
    The oceans have a major impact on the planet: they store 28% of the CO 2 pro- duced by humans, they act as the world’s thermal damper for temperature changes, and more than 17, 000 species call the deep oceans their home. Scientific drivers, like climate change, and commercial applications, like deep sea fisheries and underwater mining, are pushing the need to know more about oceans at depths beyond 1000 meters. However, the high cost associated with autonomous underwater vehicles (AUVs) capable of operating beyond the depth of 1000 meters has limited the study of the deep ocean. Traditional AUVs used for deep-sea navigation are large and typically weigh up- wards of 1000-kgs, thus requiring careful planning before deployment and multi- person teams to operate. This thesis proposes the use of a new vehicle design based around a low-cost oceanographic glass sphere as the main pressure enclosure to reduce its size and cost while maintaining the ability for deep-sea operation. This novel housing concept, together with a minimal sensor suite, enables environmental research at depths previously inaccessible at this price point. The key characteristic that enables the cost reduction of this platform is the removal of the Doppler velocity log (DVL) sensor, which is replaced by optical cameras. Cameras allow the vehicle to estimate its motion in the water, but also enable scientific applications such as identification of habitat types or population density estimation of benthic species. After each survey, images can be further processed to produce full, dense 3D models of the survey area. While underwater optical cameras are frequently placed inside pressure housings behind flat or domed viewports and used for visual navigation or 3D reconstructions, the underlying assumptions for those algorithms do not hold in the underwater domain. Refraction at the housing viewport, together with wavelength-dependent attenuation of light in water, render the ubiquitous pinhole camera model invalid. This thesis presents a quantitative evaluation of the errors introduced by underwater effects for 3D reconstruction applications, comparing low- and high-cost camera systems to quantify the trade-off between equipment cost and performance. Although the distortion effects created by underwater refraction of light have been extensively studied for more traditional viewports, the novel design proposed necessitates new research into modeling the lensing effect of this off-axis domed viewport. A novel calibration method is presented that explicitly models the effect of the glass interface on image formation based on the characterization of optical distortions. The method is capable of accurately finding the position of the camera within the dome and further enables the use of deconvolution to improve the quality of the taken image. Finally, this thesis presents the validation of the designed vehicle for optical surveying tasks and introduces a end-to-end ocean mapping pipeline to streamline AUV deployments, enabling efficient use of time and resources.PHDNaval Architecture & Marine EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/155225/1/eiscar_1.pd

    A diver-operated hyperspectral imaging and topographic surveying system for automated mapping of benthic habitats

    Get PDF
    We developed a novel integrated technology for diver-operated surveying of shallow marine ecosystems. The HyperDiver system captures rich multifaceted data in each transect: hyperspectral and color imagery, topographic profiles, incident irradiance and water chemistry at a rate of 15-30 m(2) per minute. From surveys in a coral reef following standard diver protocols, we show how the rich optical detail can be leveraged to generate photopigment abundance and benthic composition maps. We applied machine learning techniques, with a minor annotation effort (<2% of pixels), to automatically generate cm-scale benthic habitat maps of high taxonomic resolution and accuracy (93-97%). The ability to efficiently map benthic composition, photopigment densities and rugosity at reef scales is a compelling contribution to modernize reef monitoring. Seafloor-level hyperspectral images can be used for automated mapping, avoiding operator bias in the analysis and deliver the degree of detail necessary for standardized environmental monitoring. The technique can deliver fast, objective and economic reef survey results, making it a valuable tool for coastal managers and reef ecologists. Underwater hyperspectral surveying shares the vantage point of the high spatial and taxonomic resolution restricted to field surveys, with analytical techniques of remote sensing and provides targeted validation for aerial monitoring

    Monitoring coral reefs within the Reef 2050 Integrated Monitoring and Reporting Program: final report of the coral reef expert group

    Get PDF
    [Extract] The Coral Reef Expert Group (CREG) was one of eight expert groups, which all followed a prescribed process to recommend a design for their thematic component. The tasks of the expert groups included: • Synopsis of the theme, to include discussion on current state, primary drivers, pressures and responses using DPSIR framework. • Review of all current monitoring and modelling activities relevant to the expert group theme. • Identify candidate indicators that can be monitored and would provide information about trend, status or forecasting of value or the system. • Evaluation of the adequacy and confidence of current monitoring and modelling of candidate indicators, determined by their ability to meet the objectives of the RIMReP and management needs provided by the Authority. • Identification and discussion of gaps and opportunities in current monitoring and modelling of such indicators. • Evaluation of new monitoring technologies for their potential to increase efficiency or statistical power and their compatibility with long-term datasets. • Recommendations for monitoring design including consideration of primary indicators, continuity of data sets, how the design addresses management needs, modification to existing programs, costing and transition strategies.An accessible copy of this report is not yet available from this repository, please contact [email protected] for more information

    Evaluation of underwater vehicle\u27s self-localization based on visual odometry or sensor odometry

    Get PDF
    This research focuses on two self-localization methods for observation of the sea floor and sampling. One is a method of estimate the self-localization using Kalman filter from the acceleration data calculated from equation of motion and the velocity data considering the effect of underwater vehicle\u27s oscillation. The other is visual odometry using a stereo camera. The AUV was deployed in a sea area 40m depth to evaluate the performance of self-localization estimated by two methods. Self-localization estimation using Kalman filter was less accurate than visual odometry, but it was confirmed that the variance of the estimated velocity was smaller than before estimation. In the visual odometry using stereo camera, it was confirmed that the estimation error depends on the travel direction of AUV and the moving direction of a stereo camera.2019 IEEE 14th International Conference on Industrial and Information Systems (ICIIS 2019), 18- 20, December, 2019, University of Peradeniya, Sri Lank

    Hyperspectral benthic mapping from underwater robotic platforms

    Get PDF
    We live on a planet of vast oceans; 70% of the Earth's surface is covered in water. They are integral to supporting life, providing 99% of the inhabitable space on Earth. Our oceans and the habitats within them are under threat due to a variety of factors. To understand the impacts and possible solutions, the monitoring of marine habitats is critically important. Optical imaging as a method for monitoring can provide a vast array of information however imaging through water is complex. To compensate for the selective attenuation of light in water, this thesis presents a novel light propagation model and illustrates how it can improve optical imaging performance. An in-situ hyperspectral system is designed which comprised of two upward looking spectrometers at different positions in the water column. The downwelling light in the water column is continuously sampled by the system which allows for the generation of a dynamic water model. In addition to the two upward looking spectrometers the in-situ system contains an imaging module which can be used for imaging of the seafloor. It consists of a hyperspectral sensor and a trichromatic stereo camera. New calibration methods are presented for the spatial and spectral co-registration of the two optical sensors. The water model is used to create image data which is invariant to the changing optical properties of the water and changing environmental conditions. In this thesis the in-situ optical system is mounted onboard an Autonomous Underwater Vehicle. Data from the imaging module is also used to classify seafloor materials. The classified seafloor patches are integrated into a high resolution 3D benthic map of the surveyed site. Given the limited imaging resolution of the hyperspectral sensor used in this work, a new method is also presented that uses information from the co-registered colour images to inform a new spectral unmixing method to resolve subpixel materials

    Underwater Hyperspectral Imaging (UHI): a review of systems and applications for proximal seafloor ecosystem studies

    Get PDF
    Marine ecosystem monitoring requires observations of its attributes at different spatial and temporal scales that traditional sampling methods (e.g., RGB imaging, sediment cores) struggle to efficiently provide. Proximal optical sensing methods can fill this observational gap by providing observations of, and tracking changes in, the functional features of marine ecosystems non-invasively. Underwater hyperspectral imaging (UHI) employed in proximity to the seafloor has shown a further potential to monitor pigmentation in benthic and sympagic phototrophic organisms at small spatial scales (mm–cm) and for the identification of minerals and taxa through their finely resolved spectral signatures. Despite the increasing number of studies applying UHI, a review of its applications, capabilities, and challenges for seafloor ecosystem research is overdue. In this review, we first detail how the limited band availability inherent to standard underwater cameras has led to a data analysis “bottleneck” in seafloor ecosystem research, in part due to the widespread implementation of underwater imaging platforms (e.g., remotely operated vehicles, time-lapse stations, towed cameras) that can acquire large image datasets. We discuss how hyperspectral technology brings unique opportunities to address the known limitations of RGB cameras for surveying marine environments. The review concludes by comparing how different studies harness the capacities of hyperspectral imaging, the types of methods required to validate observations, and the current challenges for accurate and replicable UHI research
    • …
    corecore