490 research outputs found

    Microsoft robotics soccer challenge : movement optimization of a quadruped robot

    Get PDF
    Estágio realizado na Universidade de Aveiro e orientado pelo Prof. Doutor Nuno LauTese de mestrado integrado. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 200

    Communications for cooperation: the RoboCup 4-legged passing challenge

    Get PDF
    Communications are the basis for the collaborative activities in the TeamChaos 4-legged team. In this paper we present the communications architecture developed both to let teammates communicate, and to easy the debugging of robot behaviors from external computers. Details of its implementation on the aiBo robots are also given. Using this infrastructure we describe a protocol for role exchange named Switch! that we have created. We also describe the use of both the communication architecture, and the Switch! protocol in the passing challenge of the 2006 edition of the RoboCu

    Learning Agile Soccer Skills for a Bipedal Robot with Deep Reinforcement Learning

    Full text link
    We investigate whether Deep Reinforcement Learning (Deep RL) is able to synthesize sophisticated and safe movement skills for a low-cost, miniature humanoid robot that can be composed into complex behavioral strategies in dynamic environments. We used Deep RL to train a humanoid robot with 20 actuated joints to play a simplified one-versus-one (1v1) soccer game. We first trained individual skills in isolation and then composed those skills end-to-end in a self-play setting. The resulting policy exhibits robust and dynamic movement skills such as rapid fall recovery, walking, turning, kicking and more; and transitions between them in a smooth, stable, and efficient manner - well beyond what is intuitively expected from the robot. The agents also developed a basic strategic understanding of the game, and learned, for instance, to anticipate ball movements and to block opponent shots. The full range of behaviors emerged from a small set of simple rewards. Our agents were trained in simulation and transferred to real robots zero-shot. We found that a combination of sufficiently high-frequency control, targeted dynamics randomization, and perturbations during training in simulation enabled good-quality transfer, despite significant unmodeled effects and variations across robot instances. Although the robots are inherently fragile, minor hardware modifications together with basic regularization of the behavior during training led the robots to learn safe and effective movements while still performing in a dynamic and agile way. Indeed, even though the agents were optimized for scoring, in experiments they walked 156% faster, took 63% less time to get up, and kicked 24% faster than a scripted baseline, while efficiently combining the skills to achieve the longer term objectives. Examples of the emergent behaviors and full 1v1 matches are available on the supplementary website.Comment: Project website: https://sites.google.com/view/op3-socce

    Multi-Agent Task Allocation for Robot Soccer

    Get PDF
    This is the published version. Copyright De GruyterThis paper models and analyzes task allocation methodologies for multiagent systems. The evaluation process was implemented as a collection of simulated soccer matches. A soccer-simulation software package was used as the test-bed as it provided the necessary features for implementing and testing the methodologies. The methodologies were tested through competitions with a number of available soccer strategies. Soccer game scores, communication, robustness, fault-tolerance, and replanning capabilities were the parameters used as the evaluation criteria for the mul1i-agent systems
    corecore