92 research outputs found

    Rigid Tree Automata and Applications

    Get PDF
    International audienceWe introduce the class of Rigid Tree Automata (RTA), an extension of standard bottom-up automata on ranked trees with distinguished states called rigid. Rigid states define a restriction on the computation of RTA on trees: RTA can test for equality in subtrees reaching the same rigid state. RTA are able to perform local and global tests of equality between subtrees, non-linear tree pattern matching, and some inequality and disequality tests as well. Properties like determinism, pumping lemma, Boolean closure, and several decision problems are studied in detail. In particular, the emptiness problem is shown decidable in linear time for RTA whereas membership of a given tree to the language of a given RTA is NP-complete. Our main result is the decidability of whether a given tree belongs to the rewrite closure of an RTA language under a restricted family of term rewriting systems, whereas this closure is not an RTA language. This result, one of the first on rewrite closure of languages of tree automata with constraints, is enabling the extension of model checking procedures based on finite tree automata techniques, in particular for the verification of communicating processes with several local non rewritable memories, like security protocols. Finally, a comparison of RTA with several classes of tree automata with local and global equality tests, with dag automata and Horn clause formalisms is also provided

    Separation of Test-Free Propositional Dynamic Logics over Context-Free Languages

    Full text link
    For a class L of languages let PDL[L] be an extension of Propositional Dynamic Logic which allows programs to be in a language of L rather than just to be regular. If L contains a non-regular language, PDL[L] can express non-regular properties, in contrast to pure PDL. For regular, visibly pushdown and deterministic context-free languages, the separation of the respective PDLs can be proven by automata-theoretic techniques. However, these techniques introduce non-determinism on the automata side. As non-determinism is also the difference between DCFL and CFL, these techniques seem to be inappropriate to separate PDL[DCFL] from PDL[CFL]. Nevertheless, this separation is shown but for programs without test operators.Comment: In Proceedings GandALF 2011, arXiv:1106.081

    Leaf languages and string compression

    Get PDF
    AbstractTight connections between leaf languages and strings compressed by straight-line programs (SLPs) are established. It is shown that the compressed membership problem for a language L is complete for the leaf language class defined by L via logspace machines. A more difficult variant of the compressed membership problem for L is shown to be complete for the leaf language class defined by L via polynomial time machines. As a corollary, it is shown that there exists a fixed linear visibly pushdown language for which the compressed membership problem is PSPACE-complete. For XML languages, it is shown that the compressed membership problem is coNP-complete.Furthermore it is shown that the embedding problem for SLP-compressed strings is hard for PP (probabilistic polynomial time)

    Generalizing input-driven languages: theoretical and practical benefits

    Get PDF
    Regular languages (RL) are the simplest family in Chomsky's hierarchy. Thanks to their simplicity they enjoy various nice algebraic and logic properties that have been successfully exploited in many application fields. Practically all of their related problems are decidable, so that they support automatic verification algorithms. Also, they can be recognized in real-time. Context-free languages (CFL) are another major family well-suited to formalize programming, natural, and many other classes of languages; their increased generative power w.r.t. RL, however, causes the loss of several closure properties and of the decidability of important problems; furthermore they need complex parsing algorithms. Thus, various subclasses thereof have been defined with different goals, spanning from efficient, deterministic parsing to closure properties, logic characterization and automatic verification techniques. Among CFL subclasses, so-called structured ones, i.e., those where the typical tree-structure is visible in the sentences, exhibit many of the algebraic and logic properties of RL, whereas deterministic CFL have been thoroughly exploited in compiler construction and other application fields. After surveying and comparing the main properties of those various language families, we go back to operator precedence languages (OPL), an old family through which R. Floyd pioneered deterministic parsing, and we show that they offer unexpected properties in two fields so far investigated in totally independent ways: they enable parsing parallelization in a more effective way than traditional sequential parsers, and exhibit the same algebraic and logic properties so far obtained only for less expressive language families

    Boolean Algebras from Trace Automata

    Get PDF
    We consider trace automata. Their vertices are Mazurkiewicz traces and they accept finite words. Considering the length of a trace as the length of its Foata normal form, we define the operations of level-length synchronization and of superposition of trace automata. We show that if a family F of trace automata is closed under these operations, then for any deterministic automaton H in F, the word languages accepted by the deterministic automata of F that are length-reducible to H form a Boolean algebra. We show that the family of trace suffix automata with level-regular contexts and the subfamily of vector addition systems satisfy these closure properties. In particular, this yields various Boolean algebras of word languages accepted by deterministic vector addition systems

    Toward a theory of input-driven locally parsable languages

    Get PDF
    If a context-free language enjoys the local parsability property then, no matter how the source string is segmented, each segment can be parsed independently, and an efficient parallel parsing algorithm becomes possible. The new class of locally chain parsable languages (LCPLs), included in the deterministic context-free language family, is here defined by means of the chain-driven automaton and characterized by decidable properties of grammar derivations. Such automaton decides whether to reduce or not a substring in a way purely driven by the terminal characters, thus extending the well-known concept of input-driven (ID) alias visibly pushdown machines. The LCPL family extends and improves the practically relevant Floyd's operator-precedence (OP) languages which are known to strictly include the ID languages, and for which a parallel-parser generator exists

    Streaming Tree Transducers

    Get PDF
    Theory of tree transducers provides a foundation for understanding expressiveness and complexity of analysis problems for specification languages for transforming hierarchically structured data such as XML documents. We introduce streaming tree transducers as an analyzable, executable, and expressive model for transforming unranked ordered trees in a single pass. Given a linear encoding of the input tree, the transducer makes a single left-to-right pass through the input, and computes the output in linear time using a finite-state control, a visibly pushdown stack, and a finite number of variables that store output chunks that can be combined using the operations of string-concatenation and tree-insertion. We prove that the expressiveness of the model coincides with transductions definable using monadic second-order logic (MSO). Existing models of tree transducers either cannot implement all MSO-definable transformations, or require regular look ahead that prohibits single-pass implementation. We show a variety of analysis problems such as type-checking and checking functional equivalence are solvable for our model.Comment: 40 page

    Tree Transducers and Formal Methods (Dagstuhl Seminar 13192)

    Get PDF
    The aim of this Dagstuhl Seminar was to bring together researchers from various research areas related to the theory and application of tree transducers. Recently, interest in tree transducers has been revived due to surprising new applications in areas such as XML databases, security verification, programming language theory, and linguistics. This seminar therefore aimed to inspire the exchange of theoretical results and information regarding the practical requirements related to tree transducers

    The Expressive Power of One Variable Used Once: The Chomsky Hierarchy and First-Order Monadic Constructor Rewriting

    Get PDF
    We study the implicit computational complexity of constructor term rewriting systems where every function and constructor symbol is unary or nullary. Surprisingly, adding simple and natural constraints to rule formation yields classes of systems that accept exactly the four classes of languages in the Chomsky hierarchy
    corecore