4,332 research outputs found

    Infrared face recognition: a comprehensive review of methodologies and databases

    Full text link
    Automatic face recognition is an area with immense practical potential which includes a wide range of commercial and law enforcement applications. Hence it is unsurprising that it continues to be one of the most active research areas of computer vision. Even after over three decades of intense research, the state-of-the-art in face recognition continues to improve, benefitting from advances in a range of different research fields such as image processing, pattern recognition, computer graphics, and physiology. Systems based on visible spectrum images, the most researched face recognition modality, have reached a significant level of maturity with some practical success. However, they continue to face challenges in the presence of illumination, pose and expression changes, as well as facial disguises, all of which can significantly decrease recognition accuracy. Amongst various approaches which have been proposed in an attempt to overcome these limitations, the use of infrared (IR) imaging has emerged as a particularly promising research direction. This paper presents a comprehensive and timely review of the literature on this subject. Our key contributions are: (i) a summary of the inherent properties of infrared imaging which makes this modality promising in the context of face recognition, (ii) a systematic review of the most influential approaches, with a focus on emerging common trends as well as key differences between alternative methodologies, (iii) a description of the main databases of infrared facial images available to the researcher, and lastly (iv) a discussion of the most promising avenues for future research.Comment: Pattern Recognition, 2014. arXiv admin note: substantial text overlap with arXiv:1306.160

    Automatic Image Registration in Infrared-Visible Videos using Polygon Vertices

    Full text link
    In this paper, an automatic method is proposed to perform image registration in visible and infrared pair of video sequences for multiple targets. In multimodal image analysis like image fusion systems, color and IR sensors are placed close to each other and capture a same scene simultaneously, but the videos are not properly aligned by default because of different fields of view, image capturing information, working principle and other camera specifications. Because the scenes are usually not planar, alignment needs to be performed continuously by extracting relevant common information. In this paper, we approximate the shape of the targets by polygons and use affine transformation for aligning the two video sequences. After background subtraction, keypoints on the contour of the foreground blobs are detected using DCE (Discrete Curve Evolution)technique. These keypoints are then described by the local shape at each point of the obtained polygon. The keypoints are matched based on the convexity of polygon's vertices and Euclidean distance between them. Only good matches for each local shape polygon in a frame, are kept. To achieve a global affine transformation that maximises the overlapping of infrared and visible foreground pixels, the matched keypoints of each local shape polygon are stored temporally in a buffer for a few number of frames. The matrix is evaluated at each frame using the temporal buffer and the best matrix is selected, based on an overlapping ratio criterion. Our experimental results demonstrate that this method can provide highly accurate registered images and that we outperform a previous related method

    CHITNet: A Complementary to Harmonious Information Transfer Network for Infrared and Visible Image Fusion

    Full text link
    Current infrared and visible image fusion (IVIF) methods go to great lengths to excavate complementary features and design complex fusion strategies, which is extremely challenging. To this end, we rethink the IVIF outside the box, proposing a complementary to harmonious information transfer network (CHITNet). It reasonably transfers complementary information into harmonious one, which integrates both the shared and complementary features from two modalities. Specifically, to skillfully sidestep aggregating complementary information in IVIF, we design a mutual information transfer (MIT) module to mutually represent features from two modalities, roughly transferring complementary information into harmonious one. Then, a harmonious information acquisition supervised by source image (HIASSI) module is devised to further ensure the complementary to harmonious information transfer after MIT. Meanwhile, we also propose a structure information preservation (SIP) module to guarantee that the edge structure information of the source images can be transferred to the fusion results. Moreover, a mutual promotion training paradigm (MPTP) with interaction loss is adopted to facilitate better collaboration among MIT, HIASSI and SIP. In this way, the proposed method is able to generate fused images with higher qualities. Extensive experimental results demonstrate the superiority of our CHITNet over state-of-the-art algorithms in terms of visual quality and quantitative evaluations

    Improving Misaligned Multi-modality Image Fusion with One-stage Progressive Dense Registration

    Full text link
    Misalignments between multi-modality images pose challenges in image fusion, manifesting as structural distortions and edge ghosts. Existing efforts commonly resort to registering first and fusing later, typically employing two cascaded stages for registration,i.e., coarse registration and fine registration. Both stages directly estimate the respective target deformation fields. In this paper, we argue that the separated two-stage registration is not compact, and the direct estimation of the target deformation fields is not accurate enough. To address these challenges, we propose a Cross-modality Multi-scale Progressive Dense Registration (C-MPDR) scheme, which accomplishes the coarse-to-fine registration exclusively using a one-stage optimization, thus improving the fusion performance of misaligned multi-modality images. Specifically, two pivotal components are involved, a dense Deformation Field Fusion (DFF) module and a Progressive Feature Fine (PFF) module. The DFF aggregates the predicted multi-scale deformation sub-fields at the current scale, while the PFF progressively refines the remaining misaligned features. Both work together to accurately estimate the final deformation fields. In addition, we develop a Transformer-Conv-based Fusion (TCF) subnetwork that considers local and long-range feature dependencies, allowing us to capture more informative features from the registered infrared and visible images for the generation of high-quality fused images. Extensive experimental analysis demonstrates the superiority of the proposed method in the fusion of misaligned cross-modality images

    IAIFNet: An Illumination-Aware Infrared and Visible Image Fusion Network

    Full text link
    Infrared and visible image fusion (IVIF) is used to generate fusion images with comprehensive features of both images, which is beneficial for downstream vision tasks. However, current methods rarely consider the illumination condition in low-light environments, and the targets in the fused images are often not prominent. To address the above issues, we propose an Illumination-Aware Infrared and Visible Image Fusion Network, named as IAIFNet. In our framework, an illumination enhancement network first estimates the incident illumination maps of input images. Afterwards, with the help of proposed adaptive differential fusion module (ADFM) and salient target aware module (STAM), an image fusion network effectively integrates the salient features of the illumination-enhanced infrared and visible images into a fusion image of high visual quality. Extensive experimental results verify that our method outperforms five state-of-the-art methods of fusing infrared and visible images.Comment: Submitted to IEE

    On Person Authentication by Fusing Visual and Thermal Face Biometrics

    Full text link
    Recognition algorithms that use data obtained by imaging faces in the thermal spectrum are promising in achieving invariance to extreme illumination changes that are often present in practice. In this paper we analyze the performance of a recently proposed face recognition algorithm that combines visual and thermal modalities by decision level fusion. We examine (i) the effects of the proposed data preprocessing in each domain, (ii) the contribution to improved recognition of different types of features, (iii) the importance of prescription glasses detection, in the context of both 1-to-N and 1-to-1 matching (recognition vs. verification performance). Finally, we discuss the significance of our results and, in particular, identify a number of limitations of the current state-of-the-art and propose promising directions for future research
    • …
    corecore