4,837 research outputs found

    GazeStereo3D: seamless disparity manipulations

    Get PDF
    Producing a high quality stereoscopic impression on current displays is a challenging task. The content has to be carefully prepared in order to maintain visual comfort, which typically affects the quality of depth reproduction. In this work, we show that this problem can be significantly alleviated when the eye fixation regions can be roughly estimated. We propose a new method for stereoscopic depth adjustment that utilizes eye tracking or other gaze prediction information. The key idea that distinguishes our approach from the previous work is to apply gradual depth adjustments at the eye fixation stage, so that they remain unnoticeable. To this end, we measure the limits imposed on the speed of disparity changes in various depth adjustment scenarios, and formulate a new model that can guide such seamless stereoscopic content processing. Based on this model, we propose a real-time controller that applies local manipulations to stereoscopic content to find the optimum between depth reproduction and visual comfort. We show that the controller is mostly immune to the limitations of low-cost eye tracking solutions. We also demonstrate benefits of our model in off-line applications, such as stereoscopic movie production, where skillful directors can reliably guide and predict viewers' attention or where attended image regions are identified during eye tracking sessions. We validate both our model and the controller in a series of user experiments. They show significant improvements in depth perception without sacrificing the visual quality when our techniques are applied

    Space-variant spatio-temporal filtering of video for gaze visualization and perceptual learning

    Get PDF
    Dorr, M., Jarodzka, H., & Barth, E. (2010). Space-variant spatio-temporal filtering of video for gaze visualization and perceptual learning. In C. Morimoto & H. Instance (Eds.), Proceedings of the 2010 Symposium on Eye Tracking Research & Applications ETRA ’10 (pp. 307-314). New York, NY: ACM.We introduce an algorithm for space-variant filtering of video based on a spatio-temporal Laplacian pyramid and use this algorithm to render videos in order to visualize prerecorded eye movements. Spatio-temporal contrast and colour saturation are reduced as a function of distance to the nearest gaze point of regard, i.e. non- fixated, distracting regions are filtered out, whereas fixated image regions remain unchanged. Results of an experiment in which the eye movements of an expert on instructional videos are visualized with this algorithm, so that the gaze of novices is guided to relevant image locations. Results show that this visualization technique facilitates the novices’ perceptual learning

    Noise-based Enhancement for Foveated Rendering

    Get PDF
    Human visual sensitivity to spatial details declines towards the periphery. Novel image synthesis techniques, so-called foveated rendering, exploit this observation and reduce the spatial resolution of synthesized images for the periphery, avoiding the synthesis of high-spatial-frequency details that are costly to generate but not perceived by a viewer. However, contemporary techniques do not make a clear distinction between the range of spatial frequencies that must be reproduced and those that can be omitted. For a given eccentricity, there is a range of frequencies that are detectable but not resolvable. While the accurate reproduction of these frequencies is not required, an observer can detect their absence if completely omitted. We use this observation to improve the performance of existing foveated rendering techniques. We demonstrate that this specific range of frequencies can be efficiently replaced with procedural noise whose parameters are carefully tuned to image content and human perception. Consequently, these fre- quencies do not have to be synthesized during rendering, allowing more aggressive foveation, and they can be replaced by noise generated in a less expensive post-processing step, leading to improved performance of the ren- dering system. Our main contribution is a perceptually-inspired technique for deriving the parameters of the noise required for the enhancement and its calibration. The method operates on rendering output and runs at rates exceeding 200 FPS at 4K resolution, making it suitable for integration with real-time foveated rendering systems for VR and AR devices. We validate our results and compare them to the existing contrast enhancement technique in user experiments

    Foveated Path Tracing with Fast Reconstruction and Efficient Sample Distribution

    Get PDF
    Polunseuranta on tietokonegrafiikan piirtotekniikka, jota on käytetty pääasiassa ei-reaaliaikaisen realistisen piirron tekemiseen. Polunseuranta tukee luonnostaan monia muilla tekniikoilla vaikeasti saavutettavia todellisen valon ilmiöitä kuten heijastuksia ja taittumista. Reaaliaikainen polunseuranta on hankalaa polunseurannan suuren laskentavaatimuksen takia. Siksi nykyiset reaaliaikaiset polunseurantasysteemi tuottavat erittäin kohinaisia kuvia, jotka tyypillisesti suodatetaan jälkikäsittelykohinanpoisto-suodattimilla. Erittäin immersiivisiä käyttäjäkokemuksia voitaisiin luoda polunseurannalla, joka täyttäisi laajennetun todellisuuden vaatimukset suuresta resoluutiosta riittävän matalassa vasteajassa. Yksi mahdollinen ratkaisu näiden vaatimusten täyttämiseen voisi olla katsekeskeinen polunseuranta, jossa piirron resoluutiota vähennetään katseen reunoilla. Tämän johdosta piirron laatu on katseen reunoilla sekä harvaa että kohinaista, mikä asettaa suuren roolin lopullisen kuvan koostavalle suodattimelle. Tässä työssä esitellään ensimmäinen reaaliajassa toimiva regressionsuodatin. Suodatin on suunniteltu kohinaisille kuville, joissa on yksi polunseurantanäyte pikseliä kohden. Nopea suoritus saavutetaan tiileissä käsittelemällä ja nopealla sovituksen toteutuksella. Lisäksi työssä esitellään Visual-Polar koordinaattiavaruus, joka jakaa polunseurantanäytteet siten, että niiden jakauma seuraa silmän herkkyysmallia. Visual-Polar-avaruuden etu muihin tekniikoiden nähden on että se vähentää työmäärää sekä polunseurannassa että suotimessa. Nämä tekniikat esittelevät toimivan prototyypin katsekeskeisestä polunseurannasta, ja saattavat toimia tienraivaajina laajamittaiselle realistisen reaaliaikaisen polunseurannan käyttöönotolle.Photo-realistic offline rendering is currently done with path tracing, because it naturally produces many real-life light effects such as reflections, refractions and caustics. These effects are hard to achieve with other rendering techniques. However, path tracing in real time is complicated due to its high computational demand. Therefore, current real-time path tracing systems can only generate very noisy estimate of the final frame, which is then denoised with a post-processing reconstruction filter. A path tracing-based rendering system capable of filling the high resolution in the low latency requirements of mixed reality devices would generate a very immersive user experience. One possible solution for fulfilling these requirements could be foveated path tracing, wherein the rendering resolution is reduced in the periphery of the human visual system. The key challenge is that the foveated path tracing in the periphery is both sparse and noisy, placing high demands on the reconstruction filter. This thesis proposes the first regression-based reconstruction filter for path tracing that runs in real time. The filter is designed for highly noisy one sample per pixel inputs. The fast execution is accomplished with blockwise processing and fast implementation of the regression. In addition, a novel Visual-Polar coordinate space which distributes the samples according to the contrast sensitivity model of the human visual system is proposed. The specialty of Visual-Polar space is that it reduces both path tracing and reconstruction work because both of them can be done with smaller resolution. These techniques enable a working prototype of a foveated path tracing system and may work as a stepping stone towards wider commercial adoption of photo-realistic real-time path tracing

    Blickpunktabhängige Computergraphik

    Get PDF
    Contemporary digital displays feature multi-million pixels at ever-increasing refresh rates. Reality, on the other hand, provides us with a view of the world that is continuous in space and time. The discrepancy between viewing the physical world and its sampled depiction on digital displays gives rise to perceptual quality degradations. By measuring or estimating where we look, gaze-contingent algorithms aim at exploiting the way we visually perceive to remedy visible artifacts. This dissertation presents a variety of novel gaze-contingent algorithms and respective perceptual studies. Chapter 4 and 5 present methods to boost perceived visual quality of conventional video footage when viewed on commodity monitors or projectors. In Chapter 6 a novel head-mounted display with real-time gaze tracking is described. The device enables a large variety of applications in the context of Virtual Reality and Augmented Reality. Using the gaze-tracking VR headset, a novel gaze-contingent render method is described in Chapter 7. The gaze-aware approach greatly reduces computational efforts for shading virtual worlds. The described methods and studies show that gaze-contingent algorithms are able to improve the quality of displayed images and videos or reduce the computational effort for image generation, while display quality perceived by the user does not change.Moderne digitale Bildschirme ermöglichen immer höhere Auflösungen bei ebenfalls steigenden Bildwiederholraten. Die Realität hingegen ist in Raum und Zeit kontinuierlich. Diese Grundverschiedenheit führt beim Betrachter zu perzeptuellen Unterschieden. Die Verfolgung der Aug-Blickrichtung ermöglicht blickpunktabhängige Darstellungsmethoden, die sichtbare Artefakte verhindern können. Diese Dissertation trägt zu vier Bereichen blickpunktabhängiger und wahrnehmungstreuer Darstellungsmethoden bei. Die Verfahren in Kapitel 4 und 5 haben zum Ziel, die wahrgenommene visuelle Qualität von Videos für den Betrachter zu erhöhen, wobei die Videos auf gewöhnlicher Ausgabehardware wie z.B. einem Fernseher oder Projektor dargestellt werden. Kapitel 6 beschreibt die Entwicklung eines neuartigen Head-mounted Displays mit Unterstützung zur Erfassung der Blickrichtung in Echtzeit. Die Kombination der Funktionen ermöglicht eine Reihe interessanter Anwendungen in Bezug auf Virtuelle Realität (VR) und Erweiterte Realität (AR). Das vierte und abschließende Verfahren in Kapitel 7 dieser Dissertation beschreibt einen neuen Algorithmus, der das entwickelte Eye-Tracking Head-mounted Display zum blickpunktabhängigen Rendern nutzt. Die Qualität des Shadings wird hierbei auf Basis eines Wahrnehmungsmodells für jeden Bildpixel in Echtzeit analysiert und angepasst. Das Verfahren hat das Potenzial den Berechnungsaufwand für das Shading einer virtuellen Szene auf ein Bruchteil zu reduzieren. Die in dieser Dissertation beschriebenen Verfahren und Untersuchungen zeigen, dass blickpunktabhängige Algorithmen die Darstellungsqualität von Bildern und Videos wirksam verbessern können, beziehungsweise sich bei gleichbleibender Bildqualität der Berechnungsaufwand des bildgebenden Verfahrens erheblich verringern lässt

    Efficient image-based rendering

    Get PDF
    Recent advancements in real-time ray tracing and deep learning have significantly enhanced the realism of computer-generated images. However, conventional 3D computer graphics (CG) can still be time-consuming and resource-intensive, particularly when creating photo-realistic simulations of complex or animated scenes. Image-based rendering (IBR) has emerged as an alternative approach that utilizes pre-captured images from the real world to generate realistic images in real-time, eliminating the need for extensive modeling. Although IBR has its advantages, it faces challenges in providing the same level of control over scene attributes as traditional CG pipelines and accurately reproducing complex scenes and objects with different materials, such as transparent objects. This thesis endeavors to address these issues by harnessing the power of deep learning and incorporating the fundamental principles of graphics and physical-based rendering. It offers an efficient solution that enables interactive manipulation of real-world dynamic scenes captured from sparse views, lighting positions, and times, as well as a physically-based approach that facilitates accurate reproduction of the view dependency effect resulting from the interaction between transparent objects and their surrounding environment. Additionally, this thesis develops a visibility metric that can identify artifacts in the reconstructed IBR images without observing the reference image, thereby contributing to the design of an effective IBR acquisition pipeline. Lastly, a perception-driven rendering technique is developed to provide high-fidelity visual content in virtual reality displays while retaining computational efficiency.Jüngste Fortschritte im Bereich Echtzeit-Raytracing und Deep Learning haben den Realismus computergenerierter Bilder erheblich verbessert. Konventionelle 3DComputergrafik (CG) kann jedoch nach wie vor zeit- und ressourcenintensiv sein, insbesondere bei der Erstellung fotorealistischer Simulationen von komplexen oder animierten Szenen. Das bildbasierte Rendering (IBR) hat sich als alternativer Ansatz herauskristallisiert, bei dem vorab aufgenommene Bilder aus der realen Welt verwendet werden, um realistische Bilder in Echtzeit zu erzeugen, so dass keine umfangreiche Modellierung erforderlich ist. Obwohl IBR seine Vorteile hat, ist es eine Herausforderung, das gleiche Maß an Kontrolle über Szenenattribute zu bieten wie traditionelle CG-Pipelines und komplexe Szenen und Objekte mit unterschiedlichen Materialien, wie z.B. transparente Objekte, akkurat wiederzugeben. In dieser Arbeit wird versucht, diese Probleme zu lösen, indem die Möglichkeiten des Deep Learning genutzt und die grundlegenden Prinzipien der Grafik und des physikalisch basierten Renderings einbezogen werden. Sie bietet eine effiziente Lösung, die eine interaktive Manipulation von dynamischen Szenen aus der realen Welt ermöglicht, die aus spärlichen Ansichten, Beleuchtungspositionen und Zeiten erfasst wurden, sowie einen physikalisch basierten Ansatz, der eine genaue Reproduktion des Effekts der Sichtabhängigkeit ermöglicht, der sich aus der Interaktion zwischen transparenten Objekten und ihrer Umgebung ergibt. Darüber hinaus wird in dieser Arbeit eine Sichtbarkeitsmetrik entwickelt, mit der Artefakte in den rekonstruierten IBR-Bildern identifiziert werden können, ohne das Referenzbild zu betrachten, und die somit zur Entwicklung einer effektiven IBR-Erfassungspipeline beiträgt. Schließlich wird ein wahrnehmungsgesteuertes Rendering-Verfahren entwickelt, um visuelle Inhalte in Virtual-Reality-Displays mit hoherWiedergabetreue zu liefern und gleichzeitig die Rechenleistung zu erhalten
    corecore