7,845 research outputs found

    Creating virtual models from uncalibrated camera views

    Get PDF
    The reconstruction of photorealistic 3D models from camera views is becoming an ubiquitous element in many applications that simulate physical interaction with the real world. In this paper, we present a low-cost, interactive pipeline aimed at non-expert users, that achieves 3D reconstruction from multiple views acquired with a standard digital camera. 3D models are amenable to access through diverse representation modalities that typically imply trade-offs between level of detail, interaction, and computational costs. Our approach allows users to selectively control the complexity of different surface regions, while requiring only simple 2D image editing operations. An initial reconstruction at coarse resolution is followed by an iterative refining of the surface areas corresponding to the selected regions

    Modeling of sound propagation in urban streets containing trees using Markovian technique

    Get PDF
    It is claimed that the trees may become a possible control method for noise in streets and hence contribute another step towards a sustainable environment. This paper examined the capability of an abatement scheme containing absorbent facades and trees in streets through a simulation model developed using the novel approach based upon Markovian techniques. The study showed that sound pressure level in a street containing trees relative to that in an empty street predicted by the Markov model was in good agreement with predictions obtained using commercial software, RAYNOISE model. Within the scope and assumptions in this study, it is shown streets containing trees and absorbent building façade result in sound reductions typically less than 1.5 dB. Hence trees in streets appear to have only a slight effect on sound attenuation, and thus make no significant contribution towards producing a sustainable environment in this respect

    3D Least Squares Based Surface Reconstruction

    Get PDF
    Diese Arbeit präsentiert einen vollständig dreidimensionalen (3D) Algorithmus zur Oberflächenrekonstruktion aus Bildfolgen mit großer Basis. Die rekonstruierten Oberflächen werden durch Dreiecksgitter beschrieben, was eine einfache Integration von Bild- und Geometrie-basierten Bedingungen ermöglicht. Die vorgestellte Arbeit erweitert den erfolgreichen Ansatz von Heipke (1990) zur 2,5D Rekonstruktion zur vollständigen 3D Rekonstruktion. Verdeckung und nicht-Lambertsche Spiegelung werden durch robuste kleinste Quadrate Ausgleichung zur Schätzung des Modells berücksichtigt. Ausgangsdaten sind Bilder von verschiedenen Positionen, abgeleitete genaue Orientierungen der Bilder und eine begrenzte Zahl von 3D Punkten (Bartelsen and Mayer 2010). Die erste Neuerung des vorgestellten Ansatzes besteht in der Art und Weise, wie zusätzliche Punkte (Unbekannte) in dem Dreiecksgitter aus den vorgegebenen 3D Punkten positioniert werden. Dank den genauen Positionen dieser zusätzlichen Punkte werden präzisere und genauere rekonstruierte Oberflächen bezüglich Form und Anpassung der Bildtextur erhalten. Die zweite Neuerung besteht darin, dass individuelle Bias-Parameter für verschiedene Bilder und angepasste Gewichtungen für unterschiedliche Bildbeobachtungen verwendet werden, um damit unterschiedliche Intensitäten verschiedener Bilder als auch Ausreißer zu berücksichtigen. Die dritte Neuerung sind die verwendete Faktorisierung der Design-Matrix und die Art und Weise, wie die Gitter in Ebenen zerlegt werden, um die Laufzeit zu reduzieren. Das wesentliche Element des vorgestellten Modells besteht in der Varianz der Intensitätswerte der Bildbeobachtungen innerhalb eines Dreiecks. Mit dem vorgestellten Ansatz können genaue 3D Oberflächen für unterschiedliche Arten von Szenen rekonstruiert werden. Ergebnisse werden als VRML (Virtual Reality Modeling Language) Modelle ausgegeben, welche sowohl das Potential als auch die derzeitigen Grenzen des Ansatzes aufzeigen.This thesis presents a fully three dimensional (3D) surface reconstruction algorithm from wide-baseline image sequences. Triangle meshes represent the reconstructed surfaces allowing for an easy integration of image- and geometry-based constraints. We extend the successful approach for 2.5D reconstruction of Heipke (1990) to full 3D. To take into account occlusion and non-Lambertian reflection, we apply robust least squares adjustment to estimate the model. The input for our approach are images taken from different positions and derived accurate image orientations as well as sparse 3D points (Bartelsen and Mayer 2010). The first novelty of our approach is the way we position additional 3D points (unknowns) in the triangle meshes constructed from given 3D points. Owing to the precise positions of these additional 3D points, we obtain more precise and accurate reconstructed surfaces in terms of shape and fit of texture. The second novelty is to apply individual bias parameters for different images and adapted weights for different image observations to account for differences in the intensity values for different images as well as to consider outliers in the estimation. The third novelty is the way we factorize the design matrix and divide the meshes into layers to reduce the run time. The essential element for our model is the variance of the intensity values of image observations inside a triangle. Applying the approach, we can reconstruct accurate 3D surfaces for different types of scenes. Results are presented in the form of VRML (Virtual Reality Modeling Language) models, demonstrating the potential of the approach as well as its current shortcomings

    Space Carving MVD Sequences for Modeling Natural 3D Scenes

    No full text
    International audienceThis paper presents a 3D modeling system designed for Multi-view Video plus Depth (MVD) sequences. The aim is to remove redundancy in both texture and depth information present in the MVD data. To this end, a volumetric framework is employed in order to merge the input depth maps. Hereby a variant of the Space Carving algorithm is proposed. Voxels are iteratively carved by ray-casting from each view, until the 3D model be geometrically consistent with every input depth map. A surface mesh is then extracted from this volumetric representation thanks to the Marching Cubes algorithm. Subsequently, to address the issue of texture modeling, a new algorithm for multi-texturing the resulting surface is presented. This algorithm selects from the set of input images the best texture candidate to map a given mesh triangle. The best texture is chosen according to a photoconsistency metric. Tests and results are provided using still images from usual MVD test-sequences

    Structuprint: a scalable and extensible tool for two-dimensional representation of protein surfaces

    Get PDF
    © 2016 Kontopoulos et al.Background: The term molecular cartography encompasses a family of computational methods for two-dimensional transformation of protein structures and analysis of their physicochemical properties. The underlying algorithms comprise multiple manual steps, whereas the few existing implementations typically restrict the user to a very limited set of molecular descriptors. Results: We present Structuprint, a free standalone software that fully automates the rendering of protein surface maps, given - at the very least - a directory with a PDB file and an amino acid property. The tool comes with a default database of 328 descriptors, which can be extended or substituted by user-provided ones. The core algorithm comprises the generation of a mould of the protein surface, which is subsequently converted to a sphere and mapped to two dimensions, using the Miller cylindrical projection. Structuprint is partly optimized for multicore computers, making the rendering of animations of entire molecular dynamics simulations feasible. Conclusions: Structuprint is an efficient application, implementing a molecular cartography algorithm for protein surfaces. According to the results of a benchmark, its memory requirements and execution time are reasonable, allowing it to run even on low-end personal computers. We believe that it will be of use - primarily but not exclusively - to structural biologists and computational biochemists

    Estimation of soil and vegetation temperatures with multiangular thermal infrared observations: IMGRASS, HEIFE, and SGP 1997 experiments

    Get PDF
    The potential of directional observations in the thermal infrared region for land surface studies is a largely uncharted area of research. The availability of the dual-view Along Track Scanning Radiometer (ATSR) observations led to explore new opportunities in this direction. In the context of studies on heat transfer at heterogeneous land surfaces, multiangular thermal infrared (TIR) observations offer the opportunity of overcoming fundamental difficulties in modeling sparse canopies. Three case studies were performed on the estimation of the component temperatures of foliage and soil. The first one included the use of multi-temporal field measurements at view angles of 0°, 23° and 52°. The second and third one were done with directional ATSR observations at view angles of 0° and 53° only. The first one was a contribution to the Inner-Mongolia Grassland Atmosphere Surface Study (IMGRASS) experiment in China, the second to the Hei He International Field Experiment (HEIFE) in China and the third one to the Southern Great Plains 1997 (SGP 1997) experiment in Oklahoma, United States. The IMGRASS experiment provided useful insights on the applicability of a simple linear mixture model to the analysis of observed radiance. The HEIFE case study was focused on the large oasis of Zhang-Ye and led to useful estimates of soil and vegetation temperatures. The SGP 1997 contributed a better understanding of the impact of spatial heterogeneity on the accuracy of retrieved foliage and soil temperatures. Limitations in the approach due to varying radiative and boundary layer forcing and to the difference in spatial resolution between the forward and the nadir view are evaluated through a combination of modeling studies and analysis of field data
    • …
    corecore