797 research outputs found

    Model Adaptation with Synthetic and Real Data for Semantic Dense Foggy Scene Understanding

    Full text link
    This work addresses the problem of semantic scene understanding under dense fog. Although considerable progress has been made in semantic scene understanding, it is mainly related to clear-weather scenes. Extending recognition methods to adverse weather conditions such as fog is crucial for outdoor applications. In this paper, we propose a novel method, named Curriculum Model Adaptation (CMAda), which gradually adapts a semantic segmentation model from light synthetic fog to dense real fog in multiple steps, using both synthetic and real foggy data. In addition, we present three other main stand-alone contributions: 1) a novel method to add synthetic fog to real, clear-weather scenes using semantic input; 2) a new fog density estimator; 3) the Foggy Zurich dataset comprising 38083808 real foggy images, with pixel-level semantic annotations for 1616 images with dense fog. Our experiments show that 1) our fog simulation slightly outperforms a state-of-the-art competing simulation with respect to the task of semantic foggy scene understanding (SFSU); 2) CMAda improves the performance of state-of-the-art models for SFSU significantly by leveraging unlabeled real foggy data. The datasets and code are publicly available.Comment: final version, ECCV 201

    Retinex filtering of foggy images: generation of a bulk set with selection and ranking

    Full text link
    In this paper we are proposing the use of GIMP Retinex, a filter of the GNU Image Manipulation Program, for enhancing foggy images. This filter involves adjusting four different parameters to find the output image which has to be preferred according to some specific purposes. Aiming to obtain a processing, which is able of choosing automatically the best image from a given set, we are proposing a method for the generation a bulk set of GIMP Retinex filtered images and a preliminary approach for selecting and ranking them.Comment: Keywords: GIMP Retinex, GIMP, Image processing, Bulk generation of images, Bulk manipulation of image

    A Neural network approach to visibility range estimation under foggy weather conditions

    Get PDF
    © 2017 The Authors. Published by Elsevier B.V. The degradation of visibility due to foggy weather conditions is a common trigger for road accidents and, as a result, there has been a growing interest to develop intelligent fog detection and visibility range estimation systems. In this contribution, we provide a brief overview of the state-of-the-art contributions in relation to estimating visibility distance under foggy weather conditions. We then present a neural network approach for estimating visibility distances using a camera that can be fixed to a roadside unit (RSU) or mounted onboard a moving vehicle. We evaluate the proposed solution using a diverse set of images under various fog density scenarios. Our approach shows very promising results that outperform the classical method of estimating the maximum distance at which a selected target can be seen. The originality of the approach stems from the usage of a single camera and a neural network learning phase based on a hybrid global feature descriptor. The proposed method can be applied to support next-generation cooperative hazard & incident warning systems based on I2V, I2I and V2V communications. Peer-review under responsibility of the Conference Program Chairs

    Mapping and Deep Analysis of Image Dehazing: Coherent Taxonomy, Datasets, Open Challenges, Motivations, and Recommendations

    Get PDF
    Our study aims to review and analyze the most relevant studies in the image dehazing field. Many aspects have been deemed necessary to provide a broad understanding of various studies that have been examined through surveying the existing literature. These aspects are as follows: datasets that have been used in the literature, challenges that other researchers have faced, motivations, and recommendations for diminishing the obstacles in the reported literature. A systematic protocol is employed to search all relevant articles on image dehazing, with variations in keywords, in addition to searching for evaluation and benchmark studies. The search process is established on three online databases, namely, IEEE Xplore, Web of Science (WOS), and ScienceDirect (SD), from 2008 to 2021. These indices are selected because they are sufficient in terms of coverage. Along with definition of the inclusion and exclusion criteria, we include 152 articles to the final set. A total of 55 out of 152 articles focused on various studies that conducted image dehazing, and 13 out 152 studies covered most of the review papers based on scenarios and general overviews. Finally, most of the included articles centered on the development of image dehazing algorithms based on real-time scenario (84/152) articles. Image dehazing removes unwanted visual effects and is often considered an image enhancement technique, which requires a fully automated algorithm to work under real-time outdoor applications, a reliable evaluation method, and datasets based on different weather conditions. Many relevant studies have been conducted to meet these critical requirements. We conducted objective image quality assessment experimental comparison of various image dehazing algorithms. In conclusions unlike other review papers, our study distinctly reflects different observations on image dehazing areas. We believe that the result of this study can serve as a useful guideline for practitioners who are looking for a comprehensive view on image dehazing

    Semantic Understanding of Foggy Scenes with Purely Synthetic Data

    Full text link
    This work addresses the problem of semantic scene understanding under foggy road conditions. Although marked progress has been made in semantic scene understanding over the recent years, it is mainly concentrated on clear weather outdoor scenes. Extending semantic segmentation methods to adverse weather conditions like fog is crucially important for outdoor applications such as self-driving cars. In this paper, we propose a novel method, which uses purely synthetic data to improve the performance on unseen real-world foggy scenes captured in the streets of Zurich and its surroundings. Our results highlight the potential and power of photo-realistic synthetic images for training and especially fine-tuning deep neural nets. Our contributions are threefold, 1) we created a purely synthetic, high-quality foggy dataset of 25,000 unique outdoor scenes, that we call Foggy Synscapes and plan to release publicly 2) we show that with this data we outperform previous approaches on real-world foggy test data 3) we show that a combination of our data and previously used data can even further improve the performance on real-world foggy data.Comment: independent class IoU scores corrected for BiSiNet architectur
    • …
    corecore