1,976 research outputs found

    The three-dimensional art gallery problem and its solutions

    Get PDF
    This thesis addressed the three-dimensional Art Gallery Problem (3D-AGP), a version of the art gallery problem, which aims to determine the number of guards required to cover the interior of a pseudo-polyhedron as well as the placement of these guards. This study exclusively focused on the version of the 3D-AGP in which the art gallery is modelled by an orthogonal pseudo-polyhedron, instead of a pseudo-polyhedron. An orthogonal pseudopolyhedron provides a simple yet effective model for an art gallery because of the fact that most real-life buildings and art galleries are largely orthogonal in shape. Thus far, the existing solutions to the 3D-AGP employ mobile guards, in which each mobile guard is allowed to roam over an entire interior face or edge of a simple orthogonal polyhedron. In many realword applications including the monitoring an art gallery, mobile guards are not always adequate. For instance, surveillance cameras are usually installed at fixed locations. The guard placement method proposed in this thesis addresses such limitations. It uses fixedpoint guards inside an orthogonal pseudo-polyhedron. This formulation of the art gallery problem is closer to that of the classical art gallery problem. The use of fixed-point guards also makes our method applicable to wider application areas. Furthermore, unlike the existing solutions which are only applicable to simple orthogonal polyhedra, our solution applies to orthogonal pseudo-polyhedra, which is a super-class of simple orthogonal polyhedron. In this thesis, a general solution to the guard placement problem for 3D-AGP on any orthogonal pseudo-polyhedron has been presented. This method is the first solution known so far to fixed-point guard placement for orthogonal pseudo-polyhedron. Furthermore, it has been shown that the upper bound for the number of fixed-point guards required for covering any orthogonal polyhedron having n vertices is (n3/2), which is the lowest upper bound known so far for the number of fixed-point guards for any orthogonal polyhedron. This thesis also provides a new way to characterise the type of a vertex in any orthogonal pseudo-polyhedron and has conjectured a quantitative relationship between the numbers of vertices with different vertex configurations in any orthogonal pseudo-polyhedron. This conjecture, if proved to be true, will be useful for gaining insight into the structure of any orthogonal pseudo-polyhedron involved in many 3-dimensional computational geometrical problems. Finally the thesis has also described a new method for splitting orthogonal polygon iv using a polyline and a new method for splitting an orthogonal polyhedron using a polyplane. These algorithms are useful in applications such as metal fabrication

    Resolução do problema da galeria de arte : um método prático e robusto para o posicionamento ótimo de guardas-ponto

    Get PDF
    Orientadores: Cid Carvalho de Souza, Pedro Jussieu de RezendeDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Nesta dissertação, apresentamos nossa pesquisa sobre o Problema da Galeria de Arte (AGP), um dos problemas mais estudados em Geometria Computacional. O AGP, que é um problema NP-difícil, consiste em encontrar o número mínimo de guardas suficiente para garantir a cobertura visual de uma galeria de arte representada por um polígono. Na versão do problema tratada neste trabalho, usualmente chamada de Problema da Galeria de Arte com Guardas-Ponto, os guardas podem ser posicionados em qualquer lugar do polígono e o objetivo é cobrir toda a região, que pode ou não conter buracos. Nós estudamos como aplicar conceitos e algoritmos de Geometria Computacional, bem como Técnicas de Programação Inteira, com a finalidade de resolver o AGP de forma exata. Este trabalho culminou na criação de um novo algoritmo para o AGP, cuja ideia é gerar, de forma iterativa, limitantes superiores e inferiores para o problema através da resolução de versões discretizadas do AGP, que são reduzidas a instâncias do Problema de Cobertura de Conjuntos. O algoritmo foi implementado e testado em mais de 2800 instâncias, de diferentes tamanhos e classes. A técnica foi capaz de resolver, em minutos, mais de 90% de todas as instâncias consideradas, incluindo polígonos com milhares de vértices, e ampliou em muito o conjunto de casos para os quais são conhecidas soluções exatas. Até onde sabemos, apesar do extensivo estudo do AGP nas últimas quatro décadas, nenhum outro algoritmo demonstrou a capacidade de resolver o AGP de forma tão eficaz como a técnica aqui descritaAbstract: In this dissertation, we present our research on the Art Gallery Problem (AGP), one of the most investigated problems in Computational Geometry. The AGP, which is a known NP-hard problem, consists in finding the minimum number of guards sufficient to ensure the visibility coverage of an art gallery represented as a polygon. In the version of the problem treated in this work, usually called Art Gallery Problem with Point Guards, the guards can be placed anywhere in the polygon and the objective is to cover the whole region, which may or not have holes. We studied how to apply Computational Geometry concepts and algorithms as well as Integer Programming techniques in order to solve the AGP to optimality. This work culminated in the creation of a new algorithm for the AGP, whose idea is to iteratively generate upper and lower bounds for the problem through the resolution of discretized versions of the AGP, which are reduced to instances of the Set Cover Problem. The algorithm was implemented and tested on more than 2800 instances of different sizes and classes of polygons. The technique was able to solve in minutes more than 90% of all instances considered, including polygons with thousands of vertices, greatly increasing the set of instances for which exact solutions are known. To the best of our knowledge, in spite of the extensive study of the AGP in the last four decades, no other algorithm has shown the ability to solve the AGP as effectively as the one described hereMestradoCiência da ComputaçãoMestre em Ciência da Computaçã

    Efficient view point selection for silhouettes of convex polyhedra

    Get PDF
    AbstractSilhouettes of polyhedra are an important primitive in application areas such as machine vision and computer graphics. In this paper, we study how to select view points of convex polyhedra such that the silhouette satisfies certain properties. Specifically, we give algorithms to find all projections of a convex polyhedron such that a given set of edges, faces and/or vertices appear on the silhouette.We present an algorithm to solve this problem in O(k2) time for k edges. For orthogonal projections, we give an improved algorithm that is fully adaptive in the number l of connected components formed by the edges, and has a time complexity of O(klogk+kl). We then generalize this algorithm to edges and/or faces appearing on the silhouette

    A Practical Algorithm with Performance Guarantees for the Art Gallery Problem

    Get PDF
    Given a closed simple polygon P, we say two points p,q see each other if the segment seg(p,q) is fully contained in P. The art gallery problem seeks a minimum size set G ? P of guards that sees P completely. The only currently correct algorithm to solve the art gallery problem exactly uses algebraic methods. As the art gallery problem is ? ?-complete, it seems unlikely to avoid algebraic methods, for any exact algorithm, without additional assumptions. In this paper, we introduce the notion of vision-stability. In order to describe vision-stability consider an enhanced guard that can see "around the corner" by an angle of ? or a diminished guard whose vision is by an angle of ? "blocked" by reflex vertices. A polygon P has vision-stability ? if the optimal number of enhanced guards to guard P is the same as the optimal number of diminished guards to guard P. We will argue that most relevant polygons are vision-stable. We describe a one-shot vision-stable algorithm that computes an optimal guard set for vision-stable polygons using polynomial time and solving one integer program. It guarantees to find the optimal solution for every vision-stable polygon. We implemented an iterative vision-stable algorithm and show its practical performance is slower, but comparable with other state-of-the-art algorithms. The practical implementation can be found at: https://github.com/simonheng/AGPIterative. Our iterative algorithm is inspired and follows closely the one-shot algorithm. It delays several steps and only computes them when deemed necessary. Given a chord c of a polygon, we denote by n(c) the number of vertices visible from c. The chord-visibility width (cw(P)) of a polygon is the maximum n(c) over all possible chords c. The set of vision-stable polygons admit an FPT algorithm when parameterized by the chord-visibility width. Furthermore, the one-shot algorithm runs in FPT time when parameterized by the number of reflex vertices

    Unit Grid Intersection Graphs: Recognition and Properties

    Full text link
    It has been known since 1991 that the problem of recognizing grid intersection graphs is NP-complete. Here we use a modified argument of the above result to show that even if we restrict to the class of unit grid intersection graphs (UGIGs), the recognition remains hard, as well as for all graph classes contained inbetween. The result holds even when considering only graphs with arbitrarily large girth. Furthermore, we ask the question of representing UGIGs on grids of minimal size. We show that the UGIGs that can be represented in a square of side length 1+epsilon, for a positive epsilon no greater than 1, are exactly the orthogonal ray graphs, and that there exist families of trees that need an arbitrarily large grid

    Manufacturability analysis for non-feature-based objects

    Get PDF
    This dissertation presents a general methodology for evaluating key manufacturability indicators using an approach that does not require feature recognition, or feature-based design input. The contributions involve methods for computing three manufacturability indicators that can be applied in a hierarchical manner. The analysis begins with the computation of visibility, which determines the potential manufacturability of a part using material removal processes such as CNC machining. This manufacturability indicator is purely based on accessibility, without considering the actual machine setup and tooling. Then, the analysis becomes more specific by analyzing the complexity in setup planning for the part; i.e. how the part geometry can be oriented to a cutting tool in an accessible manner. This indicator establishes if the part geometry is accessible about an axis of rotation, namely, whether it can be manufactured on a 4th-axis indexed machining system. The third indicator is geometric machinability, which is computed for each machining operation to indicate the actual manufacturability when employing a cutting tool with specific shape and size. The three manufacturability indicators presented in this dissertation are usable as steps in a process; however they can be executed alone or hierarchically in order to render manufacturability information. At the end of this dissertation, a Multi-Layered Visibility Map is proposed, which would serve as a re-design mechanism that can guide a part design toward increased manufacturability
    • …
    corecore