251 research outputs found

    A Flexible Image Processing Framework for Vision-based Navigation Using Monocular Image Sensors

    Get PDF
    On-Orbit Servicing (OOS) encompasses all operations related to servicing satellites and performing other work on-orbit, such as reduction of space debris. Servicing satellites includes repairs, refueling, attitude control and other tasks, which may be needed to put a failed satellite back into working condition. A servicing satellite requires accurate position and orientation (pose) information about the target spacecraft. A large quantity of different sensor families is available to accommodate this need. However, when it comes to minimizing mass, space and power required for a sensor system, mostly monocular imaging sensors perform very well. A disadvantage is- when comparing to LIDAR sensors- that costly computations are needed to process the data of the sensor. The method presented in this paper is addressing these problems by aiming to implement three different design principles; First: keep the computational burden as low as possible. Second: utilize different algorithms and choose among them, depending on the situation, to retrieve the most stable results. Third: Stay modular and flexible. The software is designed primarily for utilization in On-Orbit Servicing tasks, where- for example- a servicer spacecraft approaches an uncooperative client spacecraft, which can not aid in the process in any way as it is assumed to be completely passive. Image processing is used for navigating to the client spacecraft. In this specific scenario, it is vital to obtain accurate distance and bearing information until, in the last few meters, all six degrees of freedom are needed to be known. The smaller the distance between the spacecraft, the more accurate pose estimates are required. The algorithms used here are tested and optimized on a sophisticated Rendezvous and Docking Simulation facility (European Proximity Operations Simulator- EPOS 2.0) in its second-generation form located at the German Space Operations Center (GSOC) in Weßling, Germany. This particular simulation environment is real-time capable and provides an interface to test sensor system hardware in closed loop configuration. The results from these tests are summarized in the paper as well. Finally, an outlook on future work is given, with the intention of providing some long-term goals as the paper is presenting a snapshot of ongoing, by far not yet completed work. Moreover, it serves as an overview of additions which can improve the presented method further

    Shared-Frustum stereo rendering

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2000.Includes bibliographical references (p. 52-54).by Michael Vincent Capps.S.M

    Photorealistic physically based render engines: a comparative study

    Full text link
    Pérez Roig, F. (2012). Photorealistic physically based render engines: a comparative study. http://hdl.handle.net/10251/14797.Archivo delegad

    Compressed Coverage Masks for Path Rendering on Mobile GPUs

    Get PDF
    We present an algorithm to accelerate resolution independent curve rendering on mobile GPUs. Recent trends in graphics hardware have created a plethora of compressed texture formats specific to GPU manufacturers. However, certain implementations of platform independent path rendering require generating grayscale textures on the CPU containing the extent that each pixel is covered by the curve. In this paper, we demonstrate that generating a compressed grayscale texture prior to uploading it to the GPU creates faster rendering times in addition to the memory savings. We implement a real-time compression technique for coverage masks and compare our results against the GPU-based implementation of the highly optimized Skia rendering library. We also analyze the worst case properties of our compression algorithms. We observe up to a 2 × speed improvement over the existing GPU-based methods in addition to up to a 9:1 improvement in GPU memory gains. We demonstrate the performance on multiple mobile platforms

    Objective and subjective assessment of perceptual factors in HDR content processing

    Get PDF
    The development of the display and camera technology makes high dynamic range (HDR) image become more and more popular. High dynamic range image give us pleasant image which has more details that makes high dynamic range image has good quality. This paper shows us the some important techniques in HDR images. And it also presents the work the author did. The paper is formed of three parts. The first part is an introduction of HDR image. From this part we can know why HDR image has good quality

    Algorithm and Hardware Design for High Volume Rate 3-D Medical Ultrasound Imaging

    Get PDF
    abstract: Ultrasound B-mode imaging is an increasingly significant medical imaging modality for clinical applications. Compared to other imaging modalities like computed tomography (CT) or magnetic resonance imaging (MRI), ultrasound imaging has the advantage of being safe, inexpensive, and portable. While two dimensional (2-D) ultrasound imaging is very popular, three dimensional (3-D) ultrasound imaging provides distinct advantages over its 2-D counterpart by providing volumetric imaging, which leads to more accurate analysis of tumor and cysts. However, the amount of received data at the front-end of 3-D system is extremely large, making it impractical for power-constrained portable systems. In this thesis, algorithm and hardware design techniques to support a hand-held 3-D ultrasound imaging system are proposed. Synthetic aperture sequential beamforming (SASB) is chosen since its computations can be split into two stages, where the output generated of Stage 1 is significantly smaller in size compared to the input. This characteristic enables Stage 1 to be done in the front end while Stage 2 can be sent out to be processed elsewhere. The contributions of this thesis are as follows. First, 2-D SASB is extended to 3-D. Techniques to increase the volume rate of 3-D SASB through a new multi-line firing scheme and use of linear chirp as the excitation waveform, are presented. A new sparse array design that not only reduces the number of active transducers but also avoids the imaging degradation caused by grating lobes, is proposed. A combination of these techniques increases the volume rate of 3-D SASB by 4\texttimes{} without introducing extra computations at the front end. Next, algorithmic techniques to further reduce the Stage 1 computations in the front end are presented. These include reducing the number of distinct apodization coefficients and operating with narrow-bit-width fixed-point data. A 3-D die stacked architecture is designed for the front end. This highly parallel architecture enables the signals received by 961 active transducers to be digitalized, routed by a network-on-chip, and processed in parallel. The processed data are accumulated through a bus-based structure. This architecture is synthesized using TSMC 28 nm technology node and the estimated power consumption of the front end is less than 2 W. Finally, the Stage 2 computations are mapped onto a reconfigurable multi-core architecture, TRANSFORMER, which supports different types of on-chip memory banks and run-time reconfigurable connections between general processing elements and memory banks. The matched filtering step and the beamforming step in Stage 2 are mapped onto TRANSFORMER with different memory configurations. Gem5 simulations show that the private cache mode generates shorter execution time and higher computation efficiency compared to other cache modes. The overall execution time for Stage 2 is 14.73 ms. The average power consumption and the average Giga-operations-per-second/Watt in 14 nm technology node are 0.14 W and 103.84, respectively.Dissertation/ThesisDoctoral Dissertation Engineering 201
    corecore