1,464 research outputs found

    Optimising visibility analyses using topographic features on the terrain

    Get PDF

    Surface networks

    Get PDF
    © Copyright CASA, UCL. The desire to understand and exploit the structure of continuous surfaces is common to researchers in a range of disciplines. Few examples of the varied surfaces forming an integral part of modern subjects include terrain, population density, surface atmospheric pressure, physico-chemical surfaces, computer graphics, and metrological surfaces. The focus of the work here is a group of data structures called Surface Networks, which abstract 2-dimensional surfaces by storing only the most important (also called fundamental, critical or surface-specific) points and lines in the surfaces. Surface networks are intelligent and “natural ” data structures because they store a surface as a framework of “surface ” elements unlike the DEM or TIN data structures. This report presents an overview of the previous works and the ideas being developed by the authors of this report. The research on surface networks has fou

    Fast approximation of visibility dominance using topographic features as targets and the associated uncertainty

    Get PDF
    An approach to reduce visibility index computation time andmeasure the associated uncertainty in terrain visibility analysesis presented. It is demonstrated that the visibility indexcomputation time in mountainous terrain can be reduced substantially,without any significant information loss, if the lineof sight from each observer on the terrain is drawn only to thefundamental topographic features, i.e., peaks, pits, passes,ridges, and channels. However, the selected sampling of targetsresults in an underestimation of the visibility index ofeach observer. Two simple methods based on iterative comparisonsbetween the real visibility indices and the estimatedvisibility indices have been proposed for a preliminary assessmentof this uncertainty. The method has been demonstratedfor gridded digital elevation models

    Exploring multiple viewshed analysis using terrain features and optimisation techniques

    Get PDF
    The calculation of viewsheds is a routine operation in geographic information systems and is used in a wide range of applications. Many of these involve the siting of features, such as radio masts, which are part of a network and yet the selection of sites is normally done separately for each feature. The selection of a series of locations which collectively maximise the visual coverage of an area is a combinatorial problem and as such cannot be directly solved except for trivial cases. In this paper, two strategies for tackling this problem are explored. The first is to restrict the search to key topographic points in the landscape such as peaks, pits and passes. The second is to use heuristics which have been applied to other maximal coverage spatial problems such as location-allocation. The results show that the use of these two strategies results in a reduction of the computing time necessary by two orders of magnitude, but at the cost of a loss of 10% in the area viewed. Three different heuristics were used, of which Simulated Annealing produced the best results. However the improvement over a much simpler fast-descent swap heuristic was very slight, but at the cost of greatly increased running times. © 2004 Elsevier Ltd. All rights reserved

    Query-by-Pointing: Algorithms and Pointing Error Compensation

    Get PDF
    People typically communicate by pointing, talking, sketching, writing, and typing. Pointing can be used to visualize or exchange information about an object when there is no other mutually understood way of communication. Despite its proven expressiveness, however, it has not yet become a frequently used modality to interact with computer systems. With the rapid move towards the adoption of mobile technologies, geographic information systems (GISs) have a particular need for advanced forms of interaction that enable users to query the geographic world directly. To enable pointing-based query system on a handheld device, a number of fundamental technical challenges have to be overcome. For such a system to materialize we need models stored in the device\u27s knowledge base that can be used as surrogate of real world objects. These computations, however, assume that (1) the pointing direction matches with the line-of-sight and (2) the observations about location and direction are precise enough so that a computational model will determine the same object as what the user points at. Both assumptions are not true. This thesis, therefore, develops an efficient error compensation model to reduce the discrepancy between the line-of-sight of the eye and the pointer direction. The model is based on a coordinate system centered at the neck and distances measured from neck to eye, neck to shoulder, shoulder to handheld pointer, and the pointing direction. An experiment was conducted using a gyro-enhanced sensor and three subjects who pointed at marked targets in a given room. It showed that the error compensation algorithm significantly reduces errors in pointing with arms outstretched

    A novel rapid method for viewshed computation on DEM through max-pooling and min-expected height

    Get PDF
    Viewshed computation of a digital elevation model (DEM) plays an important role in a geographic information system, but the required high computational time is a serious problem for a practical application. Hitherto, the mainstream methods of viewshed computing include line-of-sight method, reference planes method, etc. Based on these classical algorithms, a new algorithm for viewshed computation is proposed in this paper: the Matryoshka doll algorithm. Through a pooling operation, the minimum expected height of the DEM is introduced as max-pooling with minimum expected height in the viewshed computing optimization. This is to increase the efficiency and adaptability of the computation of the visibility range. The experimental results demonstrate that the algorithm has obvious advantages in computing speed, but with the accuracy only slightly reduced

    Use of plan curvature variations for the identification of ridges and channels on DEM

    Get PDF
    This paper proposes novel improvements in the traditional algorithms for the identification of ridge and channel (also called ravines) topographic features on raster digital elevation models (DEMs). The overall methodology consists of two main steps: (1) smoothing the DEM by applying a mean filter, and (2) detection of ridge and channel features as cells with positive and negative plan curvature respectively, along with a decline and incline in plan curvature away from the cell in direction orthogonal to the feature axis respectively. The paper demonstrates a simple approach to visualize the multi-scale structure of terrains and utilize it for semi-automated topographic feature identification. Despite its simplicity, the revised algorithm produced markedly superior outputs than a comparatively sophisticated feature extraction algorithm based on conic-section analysis of terrain

    Terrain Database Correlation Assessment Using an Open Source Tool

    Get PDF
    Configuring networked simulators for training military teams in a distributed environment requires the usage of a set of terrain databases to represent the same training area. The results of simulation exercises can be degraded if the terrain databases are poorly correlated. A number of methodologies for determining the correlation between terrain databaHowever, there are few computational tools for this task and most of them were developed to address government needs, have limited availability, and handle specific digital formats. The goal of this paper is thus to present a novel open source tool developed as part of an academic research project.Comment: 12 pages, I/ITSEC 201
    • …
    corecore