1,707 research outputs found

    Path-dependent equations and viscosity solutions in infinite dimension

    Get PDF
    Path-dependent PDEs (PPDEs) are natural objects to study when one deals with non Markovian models. Recently, after the introduction of the so-called pathwise (or functional or Dupire) calculus (see [15]), in the case of finite-dimensional underlying space various papers have been devoted to studying the well-posedness of such kind of equations, both from the point of view of regular solutions (see e.g. [15, 9]) and viscosity solutions (see e.g. [16]). In this paper, motivated by the study of models driven by path-dependent stochastic PDEs, we give a first well-posedness result for viscosity solutions of PPDEs when the underlying space is a separable Hilbert space. We also observe that, in contrast with the finite-dimensional case, our well-posedness result, even in the Markovian case, applies to equations which cannot be treated, up to now, with the known theory of viscosity solutions.Comment: To appear in the Annals of Probabilit

    Hybrid PDE solver for data-driven problems and modern branching

    Full text link
    The numerical solution of large-scale PDEs, such as those occurring in data-driven applications, unavoidably require powerful parallel computers and tailored parallel algorithms to make the best possible use of them. In fact, considerations about the parallelization and scalability of realistic problems are often critical enough to warrant acknowledgement in the modelling phase. The purpose of this paper is to spread awareness of the Probabilistic Domain Decomposition (PDD) method, a fresh approach to the parallelization of PDEs with excellent scalability properties. The idea exploits the stochastic representation of the PDE and its approximation via Monte Carlo in combination with deterministic high-performance PDE solvers. We describe the ingredients of PDD and its applicability in the scope of data science. In particular, we highlight recent advances in stochastic representations for nonlinear PDEs using branching diffusions, which have significantly broadened the scope of PDD. We envision this work as a dictionary giving large-scale PDE practitioners references on the very latest algorithms and techniques of a non-standard, yet highly parallelizable, methodology at the interface of deterministic and probabilistic numerical methods. We close this work with an invitation to the fully nonlinear case and open research questions.Comment: 23 pages, 7 figures; Final SMUR version; To appear in the European Journal of Applied Mathematics (EJAM
    corecore