4,006 research outputs found

    Hyperbolic systems of conservation laws in one space dimension

    Full text link
    Aim of this paper is to review some basic ideas and recent developments in the theory of strictly hyperbolic systems of conservation laws in one space dimension. The main focus will be on the uniqueness and stability of entropy weak solutions and on the convergence of vanishing viscosity approximations

    Solving 1D Conservation Laws Using Pontryagin's Minimum Principle

    Get PDF
    This paper discusses a connection between scalar convex conservation laws and Pontryagin's minimum principle. For flux functions for which an associated optimal control problem can be found, a minimum value solution of the conservation law is proposed. For scalar space-independent convex conservation laws such a control problem exists and the minimum value solution of the conservation law is equivalent to the entropy solution. This can be seen as a generalization of the Lax--Oleinik formula to convex (not necessarily uniformly convex) flux functions. Using Pontryagin's minimum principle, an algorithm for finding the minimum value solution pointwise of scalar convex conservation laws is given. Numerical examples of approximating the solution of both space-dependent and space-independent conservation laws are provided to demonstrate the accuracy and applicability of the proposed algorithm. Furthermore, a MATLAB routine using Chebfun is provided (along with demonstration code on how to use it) to approximately solve scalar convex conservation laws with space-independent flux functions

    A possible counterexample to wellposedness of entropy solutions and to Godunov scheme convergence

    Full text link
    A particular case of initial data for the two-dimensional Euler equations is studied numerically. The results show that the Godunov method does not always converge to the physical solution, at least not on feasible grids. Moreover, they suggest that entropy solutions (in the weak entropy inequality sense) are not well-posed

    A note on adjoint error estimation for one-dimensional stationary balance laws with shocks

    Full text link
    We consider one-dimensional steady-state balance laws with discontinuous solutions. Giles and Pierce realized that a shock leads to a new term in the adjoint error representation for target functionals.This term disappears if and only if the adjoint solution satisfies an internal boundary condition. Curiously, most computer codes implementing adjoint error estimation ignore the new term in the functional, as well as the internal adjoint boundary condition. The purpose of this note is to justify this omission as follows: if one represents the exact forward and adjoint solutions as vanishing viscosity limits of the corresponding viscous problems, then the internal boundary condition is naturally satisfied in the limit
    • …
    corecore