63 research outputs found

    AI: Limits and Prospects of Artificial Intelligence

    Get PDF
    The emergence of artificial intelligence has triggered enthusiasm and promise of boundless opportunities as much as uncertainty about its limits. The contributions to this volume explore the limits of AI, describe the necessary conditions for its functionality, reveal its attendant technical and social problems, and present some existing and potential solutions. At the same time, the contributors highlight the societal and attending economic hopes and fears, utopias and dystopias that are associated with the current and future development of artificial intelligence

    SUTMS - Unified Threat Management Framework for Home Networks

    Get PDF
    Home networks were initially designed for web browsing and non-business critical applications. As infrastructure improved, internet broadband costs decreased, and home internet usage transferred to e-commerce and business-critical applications. Today’s home computers host personnel identifiable information and financial data and act as a bridge to corporate networks via remote access technologies like VPN. The expansion of remote work and the transition to cloud computing have broadened the attack surface for potential threats. Home networks have become the extension of critical networks and services, hackers can get access to corporate data by compromising devices attacked to broad- band routers. All these challenges depict the importance of home-based Unified Threat Management (UTM) systems. There is a need of unified threat management framework that is developed specifically for home and small networks to address emerging security challenges. In this research, the proposed Smart Unified Threat Management (SUTMS) framework serves as a comprehensive solution for implementing home network security, incorporating firewall, anti-bot, intrusion detection, and anomaly detection engines into a unified system. SUTMS is able to provide 99.99% accuracy with 56.83% memory improvements. IPS stands out as the most resource-intensive UTM service, SUTMS successfully reduces the performance overhead of IDS by integrating it with the flow detection mod- ule. The artifact employs flow analysis to identify network anomalies and categorizes encrypted traffic according to its abnormalities. SUTMS can be scaled by introducing optional functions, i.e., routing and smart logging (utilizing Apriori algorithms). The research also tackles one of the limitations identified by SUTMS through the introduction of a second artifact called Secure Centralized Management System (SCMS). SCMS is a lightweight asset management platform with built-in security intelligence that can seamlessly integrate with a cloud for real-time updates

    Situation-aware Edge Computing

    Get PDF
    Future wireless networks must cope with an increasing amount of data that needs to be transmitted to or from mobile devices. Furthermore, novel applications, e.g., augmented reality games or autonomous driving, require low latency and high bandwidth at the same time. To address these challenges, the paradigm of edge computing has been proposed. It brings computing closer to the users and takes advantage of the capabilities of telecommunication infrastructures, e.g., cellular base stations or wireless access points, but also of end user devices such as smartphones, wearables, and embedded systems. However, edge computing introduces its own challenges, e.g., economic and business-related questions or device mobility. Being aware of the current situation, i.e., the domain-specific interpretation of environmental information, makes it possible to develop approaches targeting these challenges. In this thesis, the novel concept of situation-aware edge computing is presented. It is divided into three areas: situation-aware infrastructure edge computing, situation-aware device edge computing, and situation-aware embedded edge computing. Therefore, the concepts of situation and situation-awareness are introduced. Furthermore, challenges are identified for each area, and corresponding solutions are presented. In the area of situation-aware infrastructure edge computing, economic and business-related challenges are addressed, since companies offering services and infrastructure edge computing facilities have to find agreements regarding the prices for allowing others to use them. In the area of situation-aware device edge computing, the main challenge is to find suitable nodes that can execute a service and to predict a node’s connection in the near future. Finally, to enable situation-aware embedded edge computing, two novel programming and data analysis approaches are presented that allow programmers to develop situation-aware applications. To show the feasibility, applicability, and importance of situation-aware edge computing, two case studies are presented. The first case study shows how situation-aware edge computing can provide services for emergency response applications, while the second case study presents an approach where network transitions can be implemented in a situation-aware manner

    Digitising the Industry Internet of Things Connecting the Physical, Digital and VirtualWorlds

    Get PDF
    This book provides an overview of the current Internet of Things (IoT) landscape, ranging from the research, innovation and development priorities to enabling technologies in a global context. A successful deployment of IoT technologies requires integration on all layers, be it cognitive and semantic aspects, middleware components, services, edge devices/machines and infrastructures. It is intended to be a standalone book in a series that covers the Internet of Things activities of the IERC - Internet of Things European Research Cluster from research to technological innovation, validation and deployment. The book builds on the ideas put forward by the European Research Cluster and the IoT European Platform Initiative (IoT-EPI) and presents global views and state of the art results on the challenges facing the research, innovation, development and deployment of IoT in the next years. The IoT is bridging the physical world with virtual world and requires sound information processing capabilities for the "digital shadows" of these real things. The research and innovation in nanoelectronics, semiconductor, sensors/actuators, communication, analytics technologies, cyber-physical systems, software, swarm intelligent and deep learning systems are essential for the successful deployment of IoT applications. The emergence of IoT platforms with multiple functionalities enables rapid development and lower costs by offering standardised components that can be shared across multiple solutions in many industry verticals. The IoT applications will gradually move from vertical, single purpose solutions to multi-purpose and collaborative applications interacting across industry verticals, organisations and people, being one of the essential paradigms of the digital economy. Many of those applications still have to be identified and involvement of end-users including the creative sector in this innovation is crucial. The IoT applications and deployments as integrated building blocks of the new digital economy are part of the accompanying IoT policy framework to address issues of horizontal nature and common interest (i.e. privacy, end-to-end security, user acceptance, societal, ethical aspects and legal issues) for providing trusted IoT solutions in a coordinated and consolidated manner across the IoT activities and pilots. In this, context IoT ecosystems offer solutions beyond a platform and solve important technical challenges in the different verticals and across verticals. These IoT technology ecosystems are instrumental for the deployment of large pilots and can easily be connected to or build upon the core IoT solutions for different applications in order to expand the system of use and allow new and even unanticipated IoT end uses. Technical topics discussed in the book include: • Introduction• Digitising industry and IoT as key enabler in the new era of Digital Economy• IoT Strategic Research and Innovation Agenda• IoT in the digital industrial context: Digital Single Market• Integration of heterogeneous systems and bridging the virtual, digital and physical worlds• Federated IoT platforms and interoperability• Evolution from intelligent devices to connected systems of systems by adding new layers of cognitive behaviour, artificial intelligence and user interfaces.• Innovation through IoT ecosystems• Trust-based IoT end-to-end security, privacy framework• User acceptance, societal, ethical aspects and legal issues• Internet of Things Application

    Conflict detection in software-defined networks

    Get PDF
    The SDN architecture facilitates the flexible deployment of network functions. While promoting innovation, this architecture induces yet a higher chance of conflicts compared to conventional networks. The detection of conflicts in SDN is the focus of this work. Restrictions of the formal analytical approach drive our choice of an experimental approach, in which we determine a parameter space and a methodology to perform experiments. We have created a dataset covering a number of situations occurring in SDN. The investigation of the dataset yields a conflict taxonomy composed of various classes organized in three broad types: local, distributed and hidden conflicts. Interestingly, hidden conflicts caused by side-effects of control applications‘ behaviour are completely new. We introduce the new concept of multi-property set, and the ·r (“dot r”) operator for the effective comparison of SDN rules. With these capable means, we present algorithms to detect conflicts and develop a conflict detection prototype. The evaluation of the prototype justifies the correctness and the realizability of our proposed concepts and methodologies for classifying as well as for detecting conflicts. Altogether, our work establishes a foundation for further conflict handling efforts in SDN, e.g., conflict resolution and avoidance. In addition, we point out challenges to be explored. Cuong Tran won the DAAD scholarship for his doctoral research at the Munich Network Management Team, Ludwig-Maximilians-Universität München, and achieved the degree in 2022. He loves to do research on policy conflicts in networked systems, IP multicast and alternatives, network security, and virtualized systems. Besides, teaching and sharing are also among his interests

    A Genealogy of Consumer Surveillance: From the First Public Market to Eatons Department Store to Amazon

    Get PDF
    Consumer surveillance has intensified over time and across differing forms of consumption space and spatial arrangement, which in turn raises the question of what explains the historical changes in the modalities of consumer surveillance. Contemporary surveillance literatures focus primarily on the current phenomenon with little consideration of the historical processes upon which the changes in the scope and intensity of the modalities of consumer surveillance were made possible. My study employs Foucauldian genealogical methodology as a system of inquiry to map the historical transformation in the modalities of consumer surveillance, by utilizing archival records, across three different consumption spaces in key stages of retail development: the first regulatory public market in the Town of York during the pre-industrial period, Eatons department store in the industrial economy, and Amazon that coincided with the rise of information economy. Conversely, contemporary theories of surveillance generally approach the intensification question by focusing on the surveillance-space axis or surveillance-consumption axis, and the spatiality of consumer surveillance is reduced to Foucauldian disciplinary panopticon. Utilizing Foucaults theories of power and governmentality and his intriguing account of the role of space in the exercise of power, my genealogical project examines the intersection of surveillance-space-consumption to understand the intensification of consumer surveillance over time across the three spaces under study. In my genealogical project, I identify five key moments pertaining to differing modalities of consumer surveillance: marketization of space, standardization of consuming bodies, statistification of consumers, virtualization of consumption, and AI inhabitation in consumer spaces. My genealogical project demonstrates that spatiality and spatialization are a recurring issue in differing modalities of consumer surveillance over time. Yet, the spatial techniques have changed and become more complex to augment the scope and intensity of monitoring and gaining of new knowledge about consumers and consumption, as part of long-standing efforts to manage the unpredictable dynamics of consumer behaviour by attaining control over all aspects of consumers life

    Edge/Fog Computing Technologies for IoT Infrastructure

    Get PDF
    The prevalence of smart devices and cloud computing has led to an explosion in the amount of data generated by IoT devices. Moreover, emerging IoT applications, such as augmented and virtual reality (AR/VR), intelligent transportation systems, and smart factories require ultra-low latency for data communication and processing. Fog/edge computing is a new computing paradigm where fully distributed fog/edge nodes located nearby end devices provide computing resources. By analyzing, filtering, and processing at local fog/edge resources instead of transferring tremendous data to the centralized cloud servers, fog/edge computing can reduce the processing delay and network traffic significantly. With these advantages, fog/edge computing is expected to be one of the key enabling technologies for building the IoT infrastructure. Aiming to explore the recent research and development on fog/edge computing technologies for building an IoT infrastructure, this book collected 10 articles. The selected articles cover diverse topics such as resource management, service provisioning, task offloading and scheduling, container orchestration, and security on edge/fog computing infrastructure, which can help to grasp recent trends, as well as state-of-the-art algorithms of fog/edge computing technologies

    Internet of Things Applications - From Research and Innovation to Market Deployment

    Get PDF
    The book aims to provide a broad overview of various topics of Internet of Things from the research, innovation and development priorities to enabling technologies, nanoelectronics, cyber physical systems, architecture, interoperability and industrial applications. It is intended to be a standalone book in a series that covers the Internet of Things activities of the IERC – Internet of Things European Research Cluster from technology to international cooperation and the global "state of play".The book builds on the ideas put forward by the European research Cluster on the Internet of Things Strategic Research Agenda and presents global views and state of the art results on the challenges facing the research, development and deployment of IoT at the global level. Internet of Things is creating a revolutionary new paradigm, with opportunities in every industry from Health Care, Pharmaceuticals, Food and Beverage, Agriculture, Computer, Electronics Telecommunications, Automotive, Aeronautics, Transportation Energy and Retail to apply the massive potential of the IoT to achieving real-world solutions. The beneficiaries will include as well semiconductor companies, device and product companies, infrastructure software companies, application software companies, consulting companies, telecommunication and cloud service providers. IoT will create new revenues annually for these stakeholders, and potentially create substantial market share shakeups due to increased technology competition. The IoT will fuel technology innovation by creating the means for machines to communicate many different types of information with one another while contributing in the increased value of information created by the number of interconnections among things and the transformation of the processed information into knowledge shared into the Internet of Everything. The success of IoT depends strongly on enabling technology development, market acceptance and standardization, which provides interoperability, compatibility, reliability, and effective operations on a global scale. The connected devices are part of ecosystems connecting people, processes, data, and things which are communicating in the cloud using the increased storage and computing power and pushing for standardization of communication and metadata. In this context security, privacy, safety, trust have to be address by the product manufacturers through the life cycle of their products from design to the support processes. The IoT developments address the whole IoT spectrum - from devices at the edge to cloud and datacentres on the backend and everything in between, through ecosystems are created by industry, research and application stakeholders that enable real-world use cases to accelerate the Internet of Things and establish open interoperability standards and common architectures for IoT solutions. Enabling technologies such as nanoelectronics, sensors/actuators, cyber-physical systems, intelligent device management, smart gateways, telematics, smart network infrastructure, cloud computing and software technologies will create new products, new services, new interfaces by creating smart environments and smart spaces with applications ranging from Smart Cities, smart transport, buildings, energy, grid, to smart health and life. Technical topics discussed in the book include: • Introduction• Internet of Things Strategic Research and Innovation Agenda• Internet of Things in the industrial context: Time for deployment.• Integration of heterogeneous smart objects, applications and services• Evolution from device to semantic and business interoperability• Software define and virtualization of network resources• Innovation through interoperability and standardisation when everything is connected anytime at anyplace• Dynamic context-aware scalable and trust-based IoT Security, Privacy framework• Federated Cloud service management and the Internet of Things• Internet of Things Application

    Building the Hyperconnected Society- Internet of Things Research and Innovation Value Chains, Ecosystems and Markets

    Get PDF
    This book aims to provide a broad overview of various topics of Internet of Things (IoT), ranging from research, innovation and development priorities to enabling technologies, nanoelectronics, cyber-physical systems, architecture, interoperability and industrial applications. All this is happening in a global context, building towards intelligent, interconnected decision making as an essential driver for new growth and co-competition across a wider set of markets. It is intended to be a standalone book in a series that covers the Internet of Things activities of the IERC – Internet of Things European Research Cluster from research to technological innovation, validation and deployment.The book builds on the ideas put forward by the European Research Cluster on the Internet of Things Strategic Research and Innovation Agenda, and presents global views and state of the art results on the challenges facing the research, innovation, development and deployment of IoT in future years. The concept of IoT could disrupt consumer and industrial product markets generating new revenues and serving as a growth driver for semiconductor, networking equipment, and service provider end-markets globally. This will create new application and product end-markets, change the value chain of companies that creates the IoT technology and deploy it in various end sectors, while impacting the business models of semiconductor, software, device, communication and service provider stakeholders. The proliferation of intelligent devices at the edge of the network with the introduction of embedded software and app-driven hardware into manufactured devices, and the ability, through embedded software/hardware developments, to monetize those device functions and features by offering novel solutions, could generate completely new types of revenue streams. Intelligent and IoT devices leverage software, software licensing, entitlement management, and Internet connectivity in ways that address many of the societal challenges that we will face in the next decade

    Network operator intent : a basis for user-friendly network configuration and analysis

    Get PDF
    Two important network management activities are configuration (making the network behave in a desirable way) and analysis (querying the network’s state). A challenge common to these activities is specifying operator intent. Seemingly simple configurations such as “no network user should exceed their allocated bandwidth” or questions like “how many network devices are in the library?” are difficult to formulate in practice, e.g. they may require multiple tools (like access control lists, firewalls, databases, or accounting software) and a detailed knowledge of the network. This requires a high degree of expertise and experience, and even then, mistakes are common. An understanding of the core concepts that network operators manipulate and analyse is needed so that more effective, efficient, and user-friendly tools and processes can be created. To address this, we create a taxonomy of languages for configuring networks, and use it to evaluate three such languages to learn how operators can express their intent. We identify factors such as language features, testing, state modeling, documentation, and tool support. Then, we interview network operators to understand what they want to express. We analyse the interviews and identify nine orthogonal dimensions which frequently appear in expressions of operator intent. We use these concepts, and our taxonomy, as the basis for a language for querying both business- and network-domain data. We evaluate our language and find that it reduces the number and complexity of queries needed to answer questions about networks. We also conduct a user study, and find that our language reduces novices’ cognitive load while increasing their accuracy and efficiency. With our language, users better understand how to approach questions, can more easily express themselves, and make fewer mistakes when interpreting data. Overall, we find that operator intent can, at one extreme, be expressed directly, as primitives like flow rules, packet counters, or CLI commands, and at another extreme as human-readable statements which are automatically translated and implemented. The former gives operators precise control, but the latter may be easier to use. We also find that there is more to expressing intent than syntax and semantics as usability, redundancy, state manipulation, and ecosystems all play a role. Our findings also show the importance of incorporating business-domain concepts in network management tools. By understanding operator intent we can reduce errors, improve both human-human and human-computer communication, create more usable tools, and make network operators more effective
    • …
    corecore