610 research outputs found

    Green IS in Infrastructure Software

    Get PDF
    As the world is becoming a more connected place, organizations become more dependent on infrastructure software such as operating systems and middleware. Infrastructure software and the hardware it is operated on consumes a lot of electricity and in a world where the climate threat is increasingly imminent, aspects of Green IS are more relevant than ever. There are a lot of research done on the characteristics of Green IS but not so much on what is practically adopted, especially not within organizations whose main industry is not IT. In this study, we examine to what extent retail and manufacturing organizations adopt aspects of Green IS to increase their impact on environmental sustainability. Four infrastructure software platforms were surveyed through four group interviews with a total of 25 participants, on their platform’s adoption of five Green IS aspects. We found that virtualization and cloud computing as well as efficiency and optimization are well adopted aspects, where automation and monitoring and KPIs are not as prominent. The last aspect, data growth management, was in all cases very little or not at all adopted

    DepthLiDAR: active segmentation of environment depth map into mobile sensors

    Get PDF
    This paper presents a novel approach for creating virtual LiDAR scanners through the active segmentation of point clouds. The method employs top-view point cloud segmentation in virtual LiDAR sensors that can be applied to the intelligent behavior of autonomous agents. Segmentation is correlated with the visual tracking of the agent for localization in the environmentand point cloud. Virtual LiDARsensors with different characteristicsand positions can then be generated. Thismethod is referred to as the DepthLiDAR approach, and is rigorously evaluated to quantify its performance and determine its advantages and limitations. An extensive set of experiments is conducted using real and virtual LiDAR sensors to compare both approaches. The objective is to propose a novel method to incorporate spatial perception in warehouses, aiming to achieve Industry 4.0. Thus, it is tested in a low-scale warehouse to incorporate realistic features. The analysis of the experiments shows a measurement improvement of 52.24% compared to the conventional LiDAR.This work was supported in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES)–Finance Code 001 and in part by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).info:eu-repo/semantics/publishedVersio

    VIRTUAL LABORATORY OF INDUSTRIAL SCENARIOS FOR TRAINING IN THE AREAS OF AUTOMATION AND CONTROL

    Get PDF
    The incorporation of new technologies and technological developments in the area of automation and control requires constant training of the personnel involved in such area. The majority of this training begins in the laboratories of educational institutions and training centers for automation personnel. These laboratories are where theoretical knowledge gained in the classroom is applied. Unfortunately, being limited in infrastructure, the use of those laboratories, in the best case scenarios, are restricted to only some actuators and sensors. Industry training is another source in which individual companies have their own internal training programs led by experts in the field. However, this method of training is not always successful since any error in programming of the controllers may lead into putting personnel at risk or financial losses for the company

    Virtual Laboratory of Industrial Scenarios for Training in the Areas of Automation and Contrtol

    Get PDF
    An article written in part by Jorge-Alberto Ortega-Moody and published in the November 2016 issue of DYNA Journal, pages 1-7

    a mixed reality digital set up to support design for serviceability

    Get PDF
    Abstract Design for serviceability begins with understanding the customer needs related to availability, reliability, accessibility and visibility, and aims at designing optimized systems where maintenance operations are easy and intuitive in order to reduce the time to repair and service costs. However, service actions are difficult to predict in front of a traditional CAD model. In this context, digital manufacturing tools and virtual simulation technologies can be validly used to create mixed digital environments where service tasks can be simulated in advance to support product design and improve maintenance actions. Furthermore, the use of human monitoring sensors can be used to detect the stressful conditions and to optimize the human tasks. The paper proposes a mixed reality (MR) set-up where operators are digitalized and monitored to analyse both physical and cognitive ergonomics. It is useful to predict design criticalities and improve the global system design. An industrial case study has been developed in collaboration with CNH Industrial to demonstrate how the proposed set-up is used for design for serviceability, on the basis of experimental evidence

    Towards a Cyber-Physical Manufacturing Cloud through Operable Digital Twins and Virtual Production Lines

    Get PDF
    In last decade, the paradigm of Cyber-Physical Systems (CPS) has integrated industrial manufacturing systems with Cloud Computing technologies for Cloud Manufacturing. Up to 2015, there were many CPS-based manufacturing systems that collected real-time machining data to perform remote monitoring, prognostics and health management, and predictive maintenance. However, these CPS-integrated and network ready machines were not directly connected to the elements of Cloud Manufacturing and required human-in-the-loop. Addressing this gap, we introduced a new paradigm of Cyber-Physical Manufacturing Cloud (CPMC) that bridges a gap between physical machines and virtual space in 2017. CPMC virtualizes machine tools in cloud through web services for direct monitoring and operations through Internet. Fundamentally, CPMC differs with contemporary modern manufacturing paradigms. For instance, CPMC virtualizes machining tools in cloud using remote services and establish direct Internet-based communication, which is overlooked in existing Cloud Manufacturing systems. Another contemporary, namely cyber-physical production systems enable networked access to machining tools. Nevertheless, CPMC virtualizes manufacturing resources in cloud and monitor and operate them over the Internet. This dissertation defines the fundamental concepts of CPMC and expands its horizon in different aspects of cloud-based virtual manufacturing such as Digital Twins and Virtual Production Lines. Digital Twin (DT) is another evolving concept since 2002 that creates as-is replicas of machining tools in cyber space. Up to 2018, many researchers proposed state-of-the-art DTs, which only focused on monitoring production lifecycle management through simulations and data driven analytics. But they overlooked executing manufacturing processes through DTs from virtual space. This dissertation identifies that DTs can be made more productive if they engage directly in direct execution of manufacturing operations besides monitoring. Towards this novel approach, this dissertation proposes a new operable DT model of CPMC that inherits the features of direct monitoring and operations from cloud. This research envisages and opens the door for future manufacturing systems where resources are developed as cloud-based DTs for remote and distributed manufacturing. Proposed concepts and visions of DTs have spawned the following fundamental researches. This dissertation proposes a novel concept of DT based Virtual Production Lines (VPL) in CPMC in 2019. It presents a design of a service-oriented architecture of DTs that virtualizes physical manufacturing resources in CPMC. Proposed DT architecture offers a more compact and integral service-oriented virtual representations of manufacturing resources. To re-configure a VPL, one requirement is to establish DT-to-DT collaborations in manufacturing clouds, which replicates to concurrent resource-to-resource collaborations in shop floors. Satisfying the above requirements, this research designs a novel framework to easily re-configure, monitor and operate VPLs using DTs of CPMC. CPMC publishes individual web services for machining tools, which is a traditional approach in the domain of service computing. But this approach overcrowds service registry databases. This dissertation introduces a novel fundamental service publication and discovery approach in 2020, OpenDT, which publishes DTs with collections of services. Experimental results show easier discovery and remote access of DTs while re-configuring VPLs. Proposed researches in this dissertation have received numerous citations both from industry and academia, clearly proving impacts of research contributions

    PLC Virtualization and Software Defined Architectures in Industrial Control Systems

    Get PDF
    Today’s automation systems are going through a transition called Industry 4.0, referring to the Fourth Industrial Revolution. New concepts, such as cyber-physical systems, mi-croservices and Smart Factory are introduced. This brings up the question of how some of these new technologies can be utilized in Industrial Control Systems. Machines and production lines are nowadays controlled by hardware PLCs and this is considered as a state-of-the-art solution. However, the market demands are continuously increasing and pushing the industry e.g. to lower the operational costs and to develop more agile solutions. Industry 4.0 provides promising approaches to take a step forward and consider PLC virtualization. The purpose of this thesis was to evaluate PLC virtualization possibilities using different Software Defined Architectures. Requirements and benefits of different solutions were evaluated. The major objective of the case study was to compare container- and hypervisor-based virtualization solutions using Docker and KVM. The case study provides a modular and scalable IIoT solution in which a virtual PLC takes over the control instead of a hardware PLC. Node-RED was used as a runtime environment and an I/O-module was needed to set up a control loop test. Response time of the control loop was measured by capturing Modbus traffic with tcpdump. Multiple iterations were performed to show minimum, maximum, average, median and 90th pctl. latencies. The results indicate that the container-based solution has a smaller overhead than the hypervisor-based solution and it has a very little overhead in general. Peak latencies are a concern and even the average latencies show that this solution would not be suitable for any hard real-time or safety-related applications. Further investigation on the topic would be needed to estimate the actual potential of PLC virtualization on hard real-time applications. First of all, a more powerful hardware PC would be needed to perform such tests. Secondly, a faster industrial protocol than Modbus TCP/IP would be required. Perhaps another kind of approach would be needed to overcome the issues that were experienced in this case study. It would be interesting to test a direct communication between virtual PLC and I/O and use Node-RED nodes for example to trigger inputs. Anyhow, it seems that container-based solution is holding much promise as a virtualization approach
    • …
    corecore