6 research outputs found

    VirtualEnaction: A Platform for Systemic Neuroscience Simulation.

    Get PDF
    International audienceConsidering the experimental study of systemic models of the brain as a whole (in contrast to models of one brain area or aspect), there is a real need for tools designed to realistically simulate these models and to experiment them. We explain here why a robotic setup is not necessarily the best choice, and what are the general requirements for such a bench-marking platform. A step further, we describe an effective solution, freely available on line and already in use to validate functional models of the brain. This solution is a digital platform where the brainy-bot implementing the model to study is embedded in a simplified but realistic controlled environment. From visual, tactile and olfactory input, to body, arm and eye motor command, in addition to vital somesthetic cues, complex survival behaviors can be experimented. The platform is also complemented with algorithmic high-level cognitive modules, making the job of building biologically plausible bots easier.Dans le domaine de l'étude expérimentale des modèles systémiques du cerveau pris dans son ensemble (par opposition aux modèles de la zone du cerveau ou une image), il y a un réel besoin d'outils conçus pour simuler de manière réaliste ces modèles et les expérimenter. Nous expliquons ici pourquoi une installation robotique n'est pas nécessairement le meilleur choix, et quelles sont les exigences générales d'une telle plateforme en terme de benchmarking. Nous décrivons alors une solution efficace, disponible gratuitement en ligne et déjà utilisées pour valider les modèles fonctionnels du cerveau. Cette solution est une plate-forme numérique où un "brainy-bot" implémente le modèle étudié et permet son intégration dans un environnement de survie contrôlé, simplifié, mais réaliste. Des entrées visuelles, tactiles et olfactive, un corps très simplifié, un bras et une commandande mootrice des yeux, en plus de la somesthésie des variavles vitales sont disponibles. De ce fait, des comportements de survie complexes peuvent être expérimentées. La plate-forme est également complétée par des modules algorithmiques de simulation de fonctions cognitives de haut niveau, facilitant le travail de construction de comportement biologiquement plausibles

    From biological to numerical experiments in systemic neuroscience: a simulation platform

    Get PDF
    International audienceStudying and modeling the brain as a whole is a real challenge. For such systemic models (in contrast to models of one brain area or aspect), there is a real need for new tools designed to perform complex numerical experiments, beyond usual tools distributed in the computer science and neuroscience communities. Here, we describe an effective solution, freely available on line and already in use, to validate such models of the brain functions. We explain why this is the best choice, as a complement to robotic setup, and what are the general requirements for such a benchmarking platform. In this experimental setup, the brainy-bot implementing the model to study is embedded in a simplified but realistic controlled environment. From visual, tactile and olfactory input, to body, arm and eye motor command, in addition to vital interoceptive cues, complex survival behaviors can be experimented. We also discuss here algorithmic high-level cognitive modules, making the job of building biologically plausible bots easier. The key point is to possibly alternate the use of symbolic representation and of complementary and usual neural coding. As a consequence, algorithmic principles have to be considered at higher abstract level, beyond a given data representation, which is an interesting challenge

    How to Understand Brain-Body-Environment Interactions? Toward a systemic Representationalism

    Get PDF
    International audienceThe target article discusses the influence of the enactivist account of perception in computer science, beyond subjectivism and objectivism. I suggest going one step further and introduce our VirtualEnaction platform, proposing a federative systemic view for brain-body-environment interaction for this analysis

    Modélisation bio-inspirée dans le numérique et la santé

    Get PDF
    National audienceThe team Mnemosyn proposes to model the brain as a system of active memories in synergy and in interaction with the internal and external world and to simulate it as a whole and in situation. Nowadays, we are focusing on some cerebral areas : amygdala, cortex, basal ganglia and hippocampus.Our bio-inspired modeling approach concerns global cognitive phenomena as well as local ones. It also has impact in the fields of Numeric and Health.L’équipe Mnémosyne a pour but de modéliser le cerveau comme un système de mémoires actives en synergie et en interaction avec les mondes interne et externe et de le simuler en situation dans des conditions réalistes. Actuellement, nous nous concentrons sur certaines zones cérébrales : amygdale, cortex, ganglions de la base et hippocampe.Notre approche de modélisation bio-inspirée s'intéresse à des phénomènes cognitifs aussi bien Globaux que Locaux et vise des impacts dans les domaines du Numérique et de la Santé.

    Connecting Artificial Brains to Robots in a Comprehensive Simulation Framework: The Neurorobotics Platform

    Get PDF
    Combined efforts in the fields of neuroscience, computer science, and biology allowed to design biologically realistic models of the brain based on spiking neural networks. For a proper validation of these models, an embodiment in a dynamic and rich sensory environment, where the model is exposed to a realistic sensory-motor task, is needed. Due to the complexity of these brain models that, at the current stage, cannot deal with real-time constraints, it is not possible to embed them into a real-world task. Rather, the embodiment has to be simulated as well. While adequate tools exist to simulate either complex neural networks or robots and their environments, there is so far no tool that allows to easily establish a communication between brain and body models. The Neurorobotics Platform is a new web-based environment that aims to fill this gap by offering scientists and technology developers a software infrastructure allowing them to connect brain models to detailed simulations of robot bodies and environments and to use the resulting neurorobotic systems for in silico experimentation. In order to simplify the workflow and reduce the level of the required programming skills, the platform provides editors for the specification of experimental sequences and conditions, environments, robots, and brain–body connectors. In addition to that, a variety of existing robots and environments are provided. This work presents the architecture of the first release of the Neurorobotics Platform developed in subproject 10 “Neurorobotics” of the Human Brain Project (HBP).1 At the current state, the Neurorobotics Platform allows researchers to design and run basic experiments in neurorobotics using simulated robots and simulated environments linked to simplified versions of brain models. We illustrate the capabilities of the platform with three example experiments: a Braitenberg task implemented on a mobile robot, a sensory-motor learning task based on a robotic controller, and a visual tracking embedding a retina model on the iCub humanoid robot. These use-cases allow to assess the applicability of the Neurorobotics Platform for robotic tasks as well as in neuroscientific experiments.The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 604102 (Human Brain Project) and from the European Unions Horizon 2020 Research and Innovation Programme under Grant Agreement No. 720270 (HBP SGA1)

    VirtualEnaction - A Platform for Systemic Neuroscience Simulation

    No full text
    corecore