2,481 research outputs found

    Psychological treatments and psychotherapies in the neurorehabilitation of pain. Evidences and recommendations from the italian consensus conference on pain in neurorehabilitation

    Get PDF
    BACKGROUND: It is increasingly recognized that treating pain is crucial for effective care within neurological rehabilitation in the setting of the neurological rehabilitation. The Italian Consensus Conference on Pain in Neurorehabilitation was constituted with the purpose identifying best practices for us in this context. Along with drug therapies and physical interventions, psychological treatments have been proven to be some of the most valuable tools that can be used within a multidisciplinary approach for fostering a reduction in pain intensity. However, there is a need to elucidate what forms of psychotherapy could be effectively matched with the specific pathologies that are typically addressed by neurorehabilitation teams. OBJECTIVES: To extensively assess the available evidence which supports the use of psychological therapies for pain reduction in neurological diseases. METHODS: A systematic review of the studies evaluating the effect of psychotherapies on pain intensity in neurological disorders was performed through an electronic search using PUBMED, EMBASE, and the Cochrane Database of Systematic Reviews. Based on the level of evidence of the included studies, recommendations were outlined separately for the different conditions. RESULTS: The literature search yielded 2352 results and the final database included 400 articles. The overall strength of the recommendations was medium/low. The different forms of psychological interventions, including Cognitive-Behavioral Therapy, cognitive or behavioral techniques, Mindfulness, hypnosis, Acceptance and Commitment Therapy (ACT), Brief Interpersonal Therapy, virtual reality interventions, various forms of biofeedback and mirror therapy were found to be effective for pain reduction in pathologies such as musculoskeletal pain, fibromyalgia, Complex Regional Pain Syndrome, Central Post-Stroke pain, Phantom Limb Pain, pain secondary to Spinal Cord Injury, multiple sclerosis and other debilitating syndromes, diabetic neuropathy, Medically Unexplained Symptoms, migraine and headache. CONCLUSIONS: Psychological interventions and psychotherapies are safe and effective treatments that can be used within an integrated approach for patients undergoing neurological rehabilitation for pain. The different interventions can be specifically selected depending on the disease being treated. A table of evidence and recommendations from the Italian Consensus Conference on Pain in Neurorehabilitation is also provided in the final part of the pape

    Combined Transcranial Direct Current Stimulation and Virtual Reality-Based Paradigm for Upper Limb Rehabilitation in Individuals with Restricted Movements. A Feasibility Study with a Chronic Stroke Survivor with Severe Hemiparesis

    Full text link
    [EN] Impairments of the upper limb function are a major cause of disability and rehabilitation. Most of the available therapeutic options are based on active exercises and on motor and attentional inclusion of the affected arm in task oriented movements. However, active movements may not be possible after severe impairment of the upper limbs. Different techniques, such as mirror therapy, motor imagery, and non-invasive brain stimulation have been shown to elicit cortical activity in absence of movements, which could be used to preserve the available neural circuits and promote motor learning. We present a virtual reality-based paradigm for upper limb rehabilitation that allows for interaction of individuals with restricted movements from active responses triggered when they attempt to perform a movement. The experimental system also provides multisensory stimulation in the visual, auditory, and tactile channels, and transcranial direct current stimulation coherent to the observed movements. A feasibility study with a chronic stroke survivor with severe hemiparesis who seemed to reach a rehabilitation plateau after two years of its inclusion in a physical therapy program showed clinically meaningful improvement of the upper limb function after the experimental intervention and maintenance of gains in both the body function and activity. The experimental intervention also was reported to be usable and motivating. Although very preliminary, these results could highlight the potential of this intervention to promote functional recovery in severe impairments of the upper limb.This study was funded in part by Ministerio de Economia y Competitividad of Spain (Project TIN2014-61975-EXP and Grant BES-2014-068218) and by Universitat Politecnica de Valencia (Grant PAID-10-14 and Grant PAID-10-16).Fuentes Calderón, MA.; Borrego, A.; Latorre Grau, J.; Colomer Font, C.; Alcañiz Raya, ML.; Sánchez-Ledesma, MJ.; Noé-Sebastián, E.... (2018). Combined Transcranial Direct Current Stimulation and Virtual Reality-Based Paradigm for Upper Limb Rehabilitation in Individuals with Restricted Movements. A Feasibility Study with a Chronic Stroke Survivor with Severe Hemiparesis. Journal of Medical Systems. 42(5):1-9. https://doi.org/10.1007/s10916-018-0949-yS19425Invernizzi, M., Negrini, S., Da, S. C., Lanzotti, L., Cisari, C., and Baricich, A., The value of adding mirror therapy for upper limb motor recovery of subacute stroke patients: A randomized controlled trial. Eur. J. Phys. Rehabil. Med. 49:311–317, 2013.Park, Y., Chang, M., Kim, K.-M., and An, D.-H., The effects of mirror therapy with tasks on upper extremity function and self-care in stroke patients. J. Phys. Ther. Sci. 27:1499–1501, 2015. https://doi.org/10.1589/jpts.27.1499 .Pollock, A., Farmer, S. E., Brady, M. C., Langhorne, P., Mead, G. E., Mehrholz, J., and van Wijck, F., Interventions for improving upper limb function after stroke. Cochrane Database Syst. Rev. 11, 2014. https://doi.org/10.1002/14651858.CD010820.pub2 .Barker, R. N., Gill, T. J., and Brauer, S. G., Factors contributing to upper limb recovery after stroke: A survey of stroke survivors in Queensland Australia. Disabil. Rehabil. 29:981–989, 2007. https://doi.org/10.1080/09638280500243570 .Bayona, N. A., Bitensky, J., Salter, K., and Teasell, R., The role of task-specific training in rehabilitation therapies. Top. Stroke Rehabil. 12:58–65, 2005. https://doi.org/10.1310/BQM5-6YGB-MVJ5-WVCR .Coupar, F., Pollock, A., Rowe, P., Weir, C., and Langhorne, P., Predictors of upper limb recovery after stroke: a systematic review and meta-analysis. Clin. Rehabil. 26:291–313, 2012. https://doi.org/10.1177/0269215511420305 .Hunter, S. M., Crome, P., Sim, J., and Pomeroy, V. M., Effects of Mobilization and Tactile Stimulation on Recovery of the Hemiplegic Upper Limb: A Series of Replicated Single-System Studies. Arch. Phys. Med. Rehabil. 89:2003–2010, 2008. https://doi.org/10.1016/j.apmr.2008.03.016 .Colomer, C., Noé, E., and Llorens, R., Mirror therapy in chronic stroke survivors with severely impaired upper limb function: A randomized controlled trial. Eur. J. Phys. Rehabil. Med. 52:271–278, 2016.Lum, P. S., Mulroy, S., Amdur, R. L., Requejo, P., Prilutsky, B. I., and Dromerick, A. W., Gains in upper extremity function after stroke via recovery or compensation: Potential differential effects on amount of real-world limb use. Top. Stroke Rehabil. 16:237–253, 2009. https://doi.org/10.1310/tsr1604-237 .Taub, E., Uswatte, G., Mark, V. W., and Morris, D. M. M., The learned nonuse phenomenon: implications for rehabilitation. Eura. Medicophys. 42:241–256, 2006.Deconinck, F. J. A., Smorenburg, A. R. P., Benham, A., Ledebt, A., Feltham, M. G., and Savelsbergh, G. J. P., Reflections on Mirror Therapy: A Systematic Review of the Effect of Mirror Visual Feedback on the Brain. Neurorehabil. Neural Repair. 29:349–361, 2014. https://doi.org/10.1177/1545968314546134 .Lindberg, P. G., Schmitz, C., Engardt, M., Forssberg, H., and Borg, J., Use-dependent up- and down-regulation of sensorimotor brain circuits in stroke patients. Neurorehabil. Neural Repair. 21:315–326, 2007. https://doi.org/10.1177/1545968306296965 .Thieme, H., Bayn, M., Wurg, M., Zange, C., Pohl, M., and Behrens, J., Mirror therapy for patients with severe arm paresis after stroke--a randomized controlled trial. Clin. Rehabil. 27:314–324, 2013. https://doi.org/10.1177/0269215512455651 .Dettmers, C., Benz, M., Liepert, J., and Rockstroh, B., Motor imagery in stroke patients, or plegic patients with spinal cord or peripheral diseases. Acta Neurol. Scand. 126:238–247, 2012. https://doi.org/10.1111/j.1600-0404.2012.01680.x .Kimberley, T. J., Khandekar, G., Skraba, L. L., Spencer, J. A., Van Gorp, E. A., and Walker, S. R., Neural substrates for motor imagery in severe hemiparesis. Neurorehabil. Neural Repair. 20:268–277, 2006. https://doi.org/10.1177/1545968306286958 .Pascual-Leone, A., The neuronal correlates of mirror therapy: an fMRI study on mirror induced visual illusions in patients with stroke. J. Neurol. Neurosurg. Psychiatry. 82:393–398, 2011. https://doi.org/10.1136/jnnp.2009.194134 .Gatti, R., Rocca, M. A., Fumagalli, S., Cattrysse, E., Kerckhofs, E., Falini, A., and Filippi, M., The effect of action observation/execution on mirror neuron system recruitment: an fMRI study in healthy individuals. Brain Imaging Behav. 11:565–576, 2017. https://doi.org/10.1007/s11682-016-9536-3 .Bonato, C., Miniussi, C., and Rossini, P. M., Transcranial magnetic stimulation and cortical evoked potentials: A TMS/EEG co-registration study. Clin. Neurophysiol. 117:1699–1707, 2006. https://doi.org/10.1016/j.clinph.2006.05.006 .Grundmann, L., Rolke, R., Nitsche, M. A., Pavlakovic, G., Happe, S., Treede, R. D., Paulus, W., and Bachmann, C. G., Effects of transcranial direct current stimulation of the primary sensory cortex on somatosensory perception. Brain Stimul. 4:253–260, 2011. https://doi.org/10.1016/j.brs.2010.12.002 .von Rein, E., Hoff, M., Kaminski, E., Sehm, B., Steele, C. J., Villringer, A., and Ragert, P., Improving motor performance without training: the effect of combining mirror visual feedback with transcranial direct current stimulation. J. Neurophysiol. 113:2383–2389, 2015. https://doi.org/10.1152/jn.00832.2014 .Kim, Y. J., Ku, J., Cho, S., Kim, H. J., Cho, Y. K., Lim, T., and Kang, Y. J., Facilitation of corticospinal excitability by virtual reality exercise following anodal transcranial direct current stimulation in healthy volunteers and subacute stroke subjects. J. Neuroeng. Rehabil. 11:124, 2014. https://doi.org/10.1186/1743-0003-11-124 .S. Bermúdez i Badia, G.G. Fluet, R. Llorens, J.E. Deutsch, Virtual Reality for Sensorimotor Rehabilitation Post Stroke: Design Principles and Evidence. In: Neurorehabilitation Technol., Second edi, Springer, 2016: pp. 573–603. https://doi.org/10.1007/978-3-319-28603-7_28 .Im, H., Ku, J., Kim, H. J., and Kang, Y. J., Virtual reality-guided motor imagery increases corticomotor excitability in healthy volunteers and stroke patients. Ann. Rehabil. Med. 40:420–431, 2016. https://doi.org/10.5535/arm.2016.40.3.420 .Colomer, C., Llorens, R., Noé, E., and Alcañiz, M., Effect of a mixed reality-based intervention on arm, hand, and finger function on chronic stroke. J. Neuroeng. Rehabil. 13, 2016. https://doi.org/10.1186/s12984-016-0153-6 .Grimm, F., Naros, G., and Gharabaghi, A., Closed-Loop Task Difficulty Adaptation during Virtual Reality Reach-to-Grasp Training Assisted with an Exoskeleton for Stroke Rehabilitation. Front. Neurosci. 10:518, 2016. https://doi.org/10.3389/fnins.2016.00518 .Poole, A., and Ball, L. J., Eye Tracking in Human-Computer Interaction and Usability Research: Current Status and Future Prospects. Encycl. Human-Computer Interact.:211–219, 2005. https://doi.org/10.4018/978-1-59140-562-7 .R. Merletti, A. Botter, A. Troiano, E. Merlo, M.A. Minetto, Technology and instrumentation for detection and conditioning of the surface electromyographic signal: State of the art, Clin. Biomech. 24 (2009) 122–134. https://doi.org/10.1016/j.clinbiomech.2008.08.006 .Trojano, L., Moretta, P., Loreto, V., Cozzolino, A., Santoro, L., and Estraneo, A., Quantitative assessment of visual behavior in disorders of consciousness. J. Neurol. 259:1888–1895, 2012. https://doi.org/10.1007/s00415-012-6435-4 .Trojano, L., Moretta, P., Loreto, V., Santoro, L., and Estraneo, A., Affective saliency modifies visual tracking behavior in disorders of consciousness: A quantitative analysis. J. Neurol. 260:306–308, 2013. https://doi.org/10.1007/s00415-012-6717-x .Sanford, J., Moreland, J., Swanson, L. R., Stratford, P. W., and Gowland, C., Reliability of the Fugl-Meyer assessment for testing motor performance in patients following stroke. Phys. Ther. 73:447–454, 1993. https://doi.org/10.1177/1545968304269210 .Lang, C. E., Edwards, D. F., Birkenmeier, R. L., and Dromerick, A. W., Estimating Minimal Clinically Important Differences of Upper-Extremity Measures Early After Stroke. Arch. Phys. Med. Rehabil. 89:1693–1700, 2008. https://doi.org/10.1016/j.apmr.2008.02.022 .Brooke, J., SUS - A quick and dirty usability scale. Usability Eval. Ind. 189:4–7, 1996. https://doi.org/10.1002/hbm.20701 .McAuley, E., Duncan, T., and Tammen, V. V., Psychometric Properties of the Intrinsic Motivation Inventory in a Competitive Sport Setting: A Confirmatory Factor Analysis. Res. Q. Exerc. Sport. 60:48–58, 1989. https://doi.org/10.1080/02701367.1989.10607413 .Page, S. J., Fulk, G. D., and Boyne, P., Clinically important differences for the upper-extremity Fugl-Meyer Scale in people with minimal to moderate impairment due to chronic stroke. Phys. Ther. 92:791–798, 2012. https://doi.org/10.2522/ptj.20110009 .R. Teasell, Evidence-Based Review of Stroke Rehabilitation - Background Concepts in Stroke Rehabilitation, 2016. http://www.ebrsr.com/evidence-review/3-background-concepts-stroke-rehabilitation .Cameirão, M. S., Badia, S. B. I., Duarte, E., Frisoli, A., and Verschure, P. F. M. J., The combined impact of virtual reality neurorehabilitation and its interfaces on upper extremity functional recovery in patients with chronic stroke. Stroke. 43:2720–2728, 2012. https://doi.org/10.1161/STROKEAHA.112.653196 .K.E. Laver, S. George, S. Thomas, J.E. Deutsch, M. Crotty, Virtual reality for stroke rehabilitation. In: Cochrane Database Syst. Rev., 2015: pp. 1–107. https://doi.org/10.1002/14651858.CD008349.pub3 .Lefebvre, S., Laloux, P., Peeters, A., Desfontaines, P., Jamart, J., and Vandermeeren, Y., Dual-tDCS Enhances Online Motor Skill Learning and Long-Term Retention in Chronic Stroke Patients. Front. Hum. Neurosci. 6:343, 2012. https://doi.org/10.3389/fnhum.2012.00343 .Lindenberg, R., Renga, V., Zhu, L. L., Nair, D., and Schlaug, G., Bihemispheric brain stimulation facilitates motor recovery in chronic stroke patients. Neurology. 75:2176–2184, 2010. https://doi.org/10.1212/WNL.0b013e318202013a .K. Figlewski, J.U. Blicher, J. Mortensen, K.E. Severinsen, J.F. Nielsen, H. Andersen, Transcranial Direct Current Stimulation Potentiates Improvements in Functional Ability in Patients With Chronic Stroke Receiving Constraint-Induced Movement Therapy, Stroke. (2016). http://stroke.ahajournals.org/content/early/2016/11/29/STROKEAHA.116.014988.abstract .Lee, S. J., and Chun, M. H., Combination transcranial direct current stimulation and virtual reality therapy for upper extremity training in patients with subacute stroke. Arch. Phys. Med. Rehabil. 95:431–438, 2014. https://doi.org/10.1016/j.apmr.2013.10.027 .Viana, R. T., Laurentino, G. E. C., Souza, R. J. P., Fonseca, J. B., Silva Filho, E. M., Dias, S. N., Teixeira-Salmela, L. F., and Monte-Silva, K. K., Effects of the addition of transcranial direct current stimulation to virtual reality therapy after stroke: A pilot randomized controlled trial. NeuroRehabilitation. 34:437–446, 2014. https://doi.org/10.3233/NRE-141065 .Sigrist, R., Rauter, G., Riener, R., and Wolf, P., Augmented visual, auditory, haptic, and multimodal feedback in motor learning: A review. Psychon. Bull. Rev. 20:21–53, 2013. https://doi.org/10.3758/s13423-012-0333-8 .Bowering, K. J., O’Connell, N. E., Tabor, A., Catley, M. J., Leake, H. B., Moseley, G. L., and Stanton, T. R., The Effects of Graded Motor Imagery and Its Components on Chronic Pain: A Systematic Review and Meta-Analysis. J. Pain. 14:3–13, 2013. https://doi.org/10.1016/j.jpain.2012.09.007

    Synopsis of an engineering solution for a painful problem Phantom Limb Pain

    Get PDF
    This paper is synopsis of a recently proposed solution for treating patients who suffer from Phantom Limb Pain (PLP). The underpinning approach of this research and development project is based on an extension of “mirror box” therapy which has had some promising results in pain reduction. An outline of an immersive individually tailored environment giving the patient a virtually realised limb presence, as a means to pain reduction is provided. The virtual 3D holographic environment is meant to produce immersive, engaging and creative environments and tasks to encourage and maintain patients’ interest, an important aspect in two of the more challenging populations under consideration (over-60s and war veterans). The system is hoped to reduce PLP by more than 3 points on an 11 point Visual Analog Scale (VAS), when a score less than 3 could be attributed to distraction alone

    Multisensory Stimulation in Stroke Rehabilitation

    Get PDF
    The brain has a large capacity for automatic simultaneous processing and integration of sensory information. Combining information from different sensory modalities facilitates our ability to detect, discriminate, and recognize sensory stimuli, and learning is often optimal in a multisensory environment. Currently used multisensory stimulation methods in stroke rehabilitation include motor imagery, action observation, training with a mirror or in a virtual environment, and various kinds of music therapy. Non-invasive brain stimulation has showed promising preliminary results in aphasia and neglect. Patient heterogeneity and the interaction of age, gender, genes, and environment are discussed. Randomized controlled longitudinal trials starting earlier post-stroke are needed. The advance in brain network science and neuroimaging enabling longitudinal studies of structural and functional networks are likely to have an important impact on patient selection for specific interventions in future stroke rehabilitation. It is proposed that we should pay more attention to age, gender, and laterality in clinical studies

    Interactive visuo-motor therapy system for stroke rehabilitation

    Get PDF
    We present a virtual reality (VR)-based motor neurorehabilitation system for stroke patients with upper limb paresis. It is based on two hypotheses: (1) observed actions correlated with self-generated or intended actions engage cortical motor observation, planning and execution areas ("mirror neurons”); (2) activation in damaged parts of motor cortex can be enhanced by viewing mirrored movements of non-paretic limbs. We postulate that our approach, applied during the acute post-stroke phase, facilitates motor re-learning and improves functional recovery. The patient controls a first-person view of virtual arms in tasks varying from simple (hitting objects) to complex (grasping and moving objects). The therapist adjusts weighting factors in the non-paretic limb to move the paretic virtual limb, thereby stimulating the mirror neuron system and optimizing patient motivation through graded task success. We present the system's neuroscientific background, technical details and preliminary result
    corecore