706 research outputs found

    Modelling the Interoperability and the Use of Control Equipment in Electrical Substations

    Get PDF
    Simulators can be defined as information systems which reliably reproduce specific phenomena and they are mainly used in training, although their field of application has grown to include manufacturing and medicine among others. In electrical engineering, simulation is an indispensable tool when working with complex systems due to the fact that it enables engineers to understand how systems work without actually needing to see them. They can learn how they work in different circumstances and optimize their design with considerably less cost in terms of time and money than if they had to carry out tests on a physical system. By using computer simulation, not only can an electrical system be designed, but it can also be optimized and its behavior examined in-depth more quickly and cheaply than by using prototypes, tests or analytical studies. Therefore, by being able to see the responses produced as the different parameters are varied, a much deeper understanding of the system under study is reached. In order to properly simulate a virtual world, technologies such as realistic graphics and dynamic simulation with real-time calculations must be used. Peripherals must be used for the system to interact with the user and the immersion comes as a result of stimuli to sight, hearing and touch. A critical factor is the possibility to solve the equations in real-time; that is, there should be no delay compared to the normal environment’s response. There is an important amount of effort being directed towards these objectives. This paragraphs deals with the development of an operation simulator for training and the fundamental objective is to develop a simulator for electrical substations. It will present the methodology to model, simulate and optimize the interoperability and the use of control equipment in electrical an substation to train operators by means of a virtual reality environment

    Discrete event simulation and virtual reality use in industry: new opportunities and future trends

    Get PDF
    This paper reviews the area of combined discrete event simulation (DES) and virtual reality (VR) use within industry. While establishing a state of the art for progress in this area, this paper makes the case for VR DES as the vehicle of choice for complex data analysis through interactive simulation models, highlighting both its advantages and current limitations. This paper reviews active research topics such as VR and DES real-time integration, communication protocols, system design considerations, model validation, and applications of VR and DES. While summarizing future research directions for this technology combination, the case is made for smart factory adoption of VR DES as a new platform for scenario testing and decision making. It is put that in order for VR DES to fully meet the visualization requirements of both Industry 4.0 and Industrial Internet visions of digital manufacturing, further research is required in the areas of lower latency image processing, DES delivery as a service, gesture recognition for VR DES interaction, and linkage of DES to real-time data streams and Big Data sets

    Virtual reality applied to a full simulator of electrical sub-stations

    Get PDF
    This paper presents an application designed to train electrical sub-station operators by means of a virtual reality environment. The application allows full viewing of any of the sub-stations in the power supply network. With the appropriate hardware (HMD, 3D mouse and tracking systems) it is possible to navigate into the virtual world and interact with the elements. Each of the sub-station components has been reproduced in the simulation model, including the behavior laws associated with it, so the complete functionality of the sub-station can be simulated. This module is built into a larger and more complex computer system composed of the actual sub-station control system, the Geographical Information System which defines the topology of the network, and the functional system which simulates the electrical behavior of the sub-station. The application automatically updates in the virtual environment any changes to the sub-station's design and allows access, from this environment, to information on every component. The virtual reality application has been implemented in a hardware configuration and has the same interface as that used in the control system of the real sub-station. In this way, the system developed can be integrated into a replica of the complete power supply network control system emulating a real sub-station, it being able to fully interact with the global system, and allow totally real situations to be simulated

    Using Quest3D to Develop VES: a Tool for Enhancing Electrical Safety and Design in the Built Environment

    Get PDF
    This paper presents a novel desktop virtual reality model titled Virtual Electrical Services (VES), developed to enhance electrical safety and design in the built environment. The model developed using Quest3D has the potential to be used as an industry design tool or as an educational tool for third level students and represents a significant watershed in how electrical services engineers can potentially design buildings and interpret their design decisions. A description of the software development process of the virtual reality model is presented along with the applications that were developed within the model. Based on the early implementation of this prototype model, it would appear electrical services engineers perceive the prototype to be a useful tool and were receptive to using VES as a learning and design tool

    Effective data compression model for on-line power system applications

    Get PDF
    The main objective of this paper is to develop an efficient data compression model for online power system applications such as load flow studies, state estimation, contingency analysis etc. and to calculate the round triptime taken for sending the compressed data in client/server architecture. Martin Burtscher algorithm is used for data compression since most of the power system data is expressed in per unit representation which is in floating point format. Many research works have been reported for representing and solving power system problems in distributed environments which include RMI, Component based, SOA and Grid computing. As the size of power systems is growing larger and larger due to increase in demand and as the interconnections between large power systems may vary from time to time due to addition of new generating units and due to geographic conditions, it becomes difficult to estimate the current operating states of the real time electric power system networks and data communication between the networks becomes difficult. The proposed method of power system data compression finds faster rate of data communications where the data is required for real–time analysis in a distributed environment

    The aptness of tangible user interfaces for explaining abstract computer network principles

    Get PDF
    The technological deployment of Tangible User Interfaces (TUI) with their intrinsic ability to interlink the physical and digital domains, have steadily gained interest within the educational sector. As a concrete example of Reality Based Interaction, such digital manipulatives have been successfully implemented in the past years to introduce scientific and engineering concepts at earlier stages throughout the educational cycle. With difference to literature, this research investigates the suitability and effectiveness of implementing a TUI system to enhance the learning experience in a higher education environment. The proposal targets the understanding of advanced computer networking principles by the deployment of an interactive table-top system. Beyond the mere simulation and modelling of networking topologies, the design presents students the ability to directly interact with and visualise the protocol execution, hence augmenting their ability to understand the abstract nature of such algorithms. Following deployment of the proposed innovate prototype within the delivery of a university undergraduate programme, the quantitative effectiveness of this novel methodology will be assessed from both a teaching and learning perspective on its ability to convey the abstract notions of computer network principles

    A review of tools, models and techniques for long-term assessment of distribution systems using OpenDSS and parallel computing

    Get PDF
    Many distribution system studies require long-term evaluations (e.g. for one year or more): Energy loss minimization, reliability assessment, or optimal rating of distributed energy resources should be based on long-term simulations of the distribution system. This paper summarizes the work carried out by the authors to perform long-term studies of large distribution systems using an OpenDSS-MATLAB environment and parallel computing. The paper details the tools, models, and procedures used by the authors in optimal allocation of distributed resources, reliability assessment of distribution systems with and without distributed generation, optimal rating of energy storage systems, or impact analysis of the solid state transformer. Since in most cases, the developed procedures were implemented for application in a multicore installation, a summary of capabilities required for parallel computing applications is also included. The approaches chosen for carrying out those studies used the traditional Monte Carlo method, clustering techniques or genetic algorithms. Custom-made models for application with OpenDSS were required in some studies: A summary of the characteristics of those models and their implementation are also included.Peer ReviewedPostprint (published version

    RealTHASC—a cyber-physical XR testbed for AI-supported real-time human autonomous systems collaborations

    Get PDF
    Today’s research on human-robot teaming requires the ability to test artificial intelligence (AI) algorithms for perception and decision-making in complex real-world environments. Field experiments, also referred to as experiments “in the wild,” do not provide the level of detailed ground truth necessary for thorough performance comparisons and validation. Experiments on pre-recorded real-world data sets are also significantly limited in their usefulness because they do not allow researchers to test the effectiveness of active robot perception and control or decision strategies in the loop. Additionally, research on large human-robot teams requires tests and experiments that are too costly even for the industry and may result in considerable time losses when experiments go awry. The novel Real-Time Human Autonomous Systems Collaborations (RealTHASC) facility at Cornell University interfaces real and virtual robots and humans with photorealistic simulated environments by implementing new concepts for the seamless integration of wearable sensors, motion capture, physics-based simulations, robot hardware and virtual reality (VR). The result is an extended reality (XR) testbed by which real robots and humans in the laboratory are able to experience virtual worlds, inclusive of virtual agents, through real-time visual feedback and interaction. VR body tracking by DeepMotion is employed in conjunction with the OptiTrack motion capture system to transfer every human subject and robot in the real physical laboratory space into a synthetic virtual environment, thereby constructing corresponding human/robot avatars that not only mimic the behaviors of the real agents but also experience the virtual world through virtual sensors and transmit the sensor data back to the real human/robot agent, all in real time. New cross-domain synthetic environments are created in RealTHASC using Unreal Engine™, bridging the simulation-to-reality gap and allowing for the inclusion of underwater/ground/aerial autonomous vehicles, each equipped with a multi-modal sensor suite. The experimental capabilities offered by RealTHASC are demonstrated through three case studies showcasing mixed real/virtual human/robot interactions in diverse domains, leveraging and complementing the benefits of experimentation in simulation and in the real world

    The aptness of tangible user interfaces for explaining abstract computer network principles

    Get PDF
    The technological deployment of Tangible User Interfaces (TUI) with their intrinsic ability to interlink the physical and digital domains, have steadily gained interest within the educational sector. As a concrete example of Reality Based Interaction, such digital manipulatives have been successfully implemented in the past years to introduce scientific and engineering concepts at earlier stages throughout the educational cycle. With difference to literature, this research investigates the suitability and effectiveness of implementing a TUI system to enhance the learning experience in a higher education environment. The proposal targets the understanding of advanced computer networking principles by the deployment of an interactive table-top system. Beyond the mere simulation and modelling of networking topologies, the design presents students the ability to directly interact with and visualise the protocol execution, hence augmenting their ability to understand the abstract nature of such algorithms. Following deployment of the proposed innovate prototype within the delivery of a university undergraduate programme, the quantitative effectiveness of this novel methodology will be assessed from both a teaching and learning perspective on its ability to convey the abstract notions of computer network principles
    • …
    corecore