2,401 research outputs found

    Spectrum Sharing in mmWave Cellular Networks via Cell Association, Coordination, and Beamforming

    Full text link
    This paper investigates the extent to which spectrum sharing in mmWave networks with multiple cellular operators is a viable alternative to traditional dedicated spectrum allocation. Specifically, we develop a general mathematical framework by which to characterize the performance gain that can be obtained when spectrum sharing is used, as a function of the underlying beamforming, operator coordination, bandwidth, and infrastructure sharing scenarios. The framework is based on joint beamforming and cell association optimization, with the objective of maximizing the long-term throughput of the users. Our asymptotic and non-asymptotic performance analyses reveal five key points: (1) spectrum sharing with light on-demand intra- and inter-operator coordination is feasible, especially at higher mmWave frequencies (for example, 73 GHz), (2) directional communications at the user equipment substantially alleviate the potential disadvantages of spectrum sharing (such as higher multiuser interference), (3) large numbers of antenna elements can reduce the need for coordination and simplify the implementation of spectrum sharing, (4) while inter-operator coordination can be neglected in the large-antenna regime, intra-operator coordination can still bring gains by balancing the network load, and (5) critical control signals among base stations, operators, and user equipment should be protected from the adverse effects of spectrum sharing, for example by means of exclusive resource allocation. The results of this paper, and their extensions obtained by relaxing some ideal assumptions, can provide important insights for future standardization and spectrum policy.Comment: 15 pages. To appear in IEEE JSAC Special Issue on Spectrum Sharing and Aggregation for Future Wireless Network

    Resource Allocation for Outdoor-to-Indoor Multicarrier Transmission with Shared UE-side Distributed Antenna Systems

    Full text link
    In this paper, we study the resource allocation algorithm design for downlink multicarrier transmission with a shared user equipment (UE)-side distributed antenna system (SUDAS) which utilizes both licensed and unlicensed frequency bands for improving the system throughput. The joint UE selection and transceiver processing matrix design is formulated as a non-convex optimization problem for the maximization of the end-to-end system throughput (bits/s). In order to obtain a tractable resource allocation algorithm, we first show that the optimal transmitter precoding and receiver post-processing matrices jointly diagonalize the end-to-end communication channel. Subsequently, the optimization problem is converted to a scalar optimization problem for multiple parallel channels, which is solved by using an asymptotically optimal iterative algorithm. Simulation results illustrate that the proposed resource allocation algorithm for the SUDAS achieves an excellent system performance and provides a spatial multiplexing gain for single-antenna UEs.Comment: accepted for publication at the IEEE Vehicular Technology Conference (VTC) Spring, Glasgow, Scotland, UK, May 201

    Energy-Efficient Multi-View Video Transmission with View Synthesis-Enabled Multicast

    Full text link
    Multi-view videos (MVVs) provide immersive viewing experience, at the cost of heavy load to wireless networks. Except for further improving viewing experience, view synthesis can create multicast opportunities for efficient transmission of MVVs in multiuser wireless networks, which has not been recognized in existing literature. In this paper, we would like to exploit view synthesis-enabled multicast opportunities for energy-efficient MVV transmission in a multiuser wireless network. Specifically, we first establish a mathematical model to characterize the impact of view synthesis on multicast opportunities and energy consumption. Then, we consider the optimization of view selection, transmission time and power allocation to minimize the weighted sum energy consumption for view transmission and synthesis, which is a challenging mixed discrete-continuous optimization problem. We propose an algorithm to obtain an optimal solution with reduced computational complexity by exploiting optimality properties. To further reduce computational complexity, we also propose two low-complexity algorithms to obtain two suboptimal solutions, based on continuous relaxation and Difference of Convex (DC) programming, respectively. Finally, numerical results demonstrate the advantage of the proposed solutions.Comment: 22 pages, 6 figures, to be published in GLOBECOM 201

    A game theoretic approach to distributed resource allocation for OFDMA-based relaying networks

    Get PDF

    Power Allocation and Scheduling for SWIPT Systems with Non-linear Energy Harvesting Model

    Full text link
    In this paper, we design a resource allocation algorithm for multiuser simultaneous wireless information and power transfer systems for a realistic non-linear energy harvesting (EH) model. In particular, the algorithm design is formulated as a non-convex optimization problem for the maximization of the long-term average total harvested power at EH receivers subject to quality of service requirements for information decoding receivers. To obtain a tractable solution, we transform the corresponding non-convex sum-of-ratios objective function into an equivalent objective function in parametric subtractive form. This leads to a computationally efficient iterative resource allocation algorithm. Numerical results reveal a significant performance gain that can be achieved if the resource allocation algorithm design is based on the non-linear EH model instead of the traditional linear model.Comment: Accepted for presentation at the IEEE ICC 201

    5G green cellular networks considering power allocation schemes

    Full text link
    It is important to assess the effect of transmit power allocation schemes on the energy consumption on random cellular networks. The energy efficiency of 5G green cellular networks with average and water-filling power allocation schemes is studied in this paper. Based on the proposed interference and achievable rate model, an energy efficiency model is proposed for MIMO random cellular networks. Furthermore, the energy efficiency with average and water-filling power allocation schemes are presented, respectively. Numerical results indicate that the maximum limits of energy efficiency are always there for MIMO random cellular networks with different intensity ratios of mobile stations (MSs) to base stations (BSs) and channel conditions. Compared with the average power allocation scheme, the water-filling scheme is shown to improve the energy efficiency of MIMO random cellular networks when channel state information (CSI) is attainable for both transmitters and receivers.Comment: 14 pages, 7 figure
    corecore