864 research outputs found

    NASA Capability Roadmaps Executive Summary

    Get PDF
    This document is the result of eight months of hard work and dedication from NASA, industry, other government agencies, and academic experts from across the nation. It provides a summary of the capabilities necessary to execute the Vision for Space Exploration and the key architecture decisions that drive the direction for those capabilities. This report is being provided to the Exploration Systems Architecture Study (ESAS) team for consideration in development of an architecture approach and investment strategy to support NASA future mission, programs and budget requests. In addition, it will be an excellent reference for NASA's strategic planning. A more detailed set of roadmaps at the technology and sub-capability levels are available on CD. These detailed products include key driving assumptions, capability maturation assessments, and technology and capability development roadmaps

    Statistical Methods for Semiconductor Manufacturing

    Get PDF
    In this thesis techniques for non-parametric modeling, machine learning, filtering and prediction and run-to-run control for semiconductor manufacturing are described. In particular, algorithms have been developed for two major applications area: - Virtual Metrology (VM) systems; - Predictive Maintenance (PdM) systems. Both technologies have proliferated in the past recent years in the semiconductor industries, called fabs, in order to increment productivity and decrease costs. VM systems aim of predicting quantities on the wafer, the main and basic product of the semiconductor industry, that may be physically measurable or not. These quantities are usually ’costly’ to be measured in economic or temporal terms: the prediction is based on process variables and/or logistic information on the production that, instead, are always available and that can be used for modeling without further costs. PdM systems, on the other hand, aim at predicting when a maintenance action has to be performed. This approach to maintenance management, based like VM on statistical methods and on the availability of process/logistic data, is in contrast with other classical approaches: - Run-to-Failure (R2F), where there are no interventions performed on the machine/process until a new breaking or specification violation happens in the production; - Preventive Maintenance (PvM), where the maintenances are scheduled in advance based on temporal intervals or on production iterations. Both aforementioned approaches are not optimal, because they do not assure that breakings and wasting of wafers will not happen and, in the case of PvM, they may lead to unnecessary maintenances without completely exploiting the lifetime of the machine or of the process. The main goal of this thesis is to prove through several applications and feasibility studies that the use of statistical modeling algorithms and control systems can improve the efficiency, yield and profits of a manufacturing environment like the semiconductor one, where lots of data are recorded and can be employed to build mathematical models. We present several original contributions, both in the form of applications and methods. The introduction of this thesis will be an overview on the semiconductor fabrication process: the most common practices on Advanced Process Control (APC) systems and the major issues for engineers and statisticians working in this area will be presented. Furthermore we will illustrate the methods and mathematical models used in the applications. We will then discuss in details the following applications: - A VM system for the estimation of the thickness deposited on the wafer by the Chemical Vapor Deposition (CVD) process, that exploits Fault Detection and Classification (FDC) data is presented. In this tool a new clustering algorithm based on Information Theory (IT) elements have been proposed. In addition, the Least Angle Regression (LARS) algorithm has been applied for the first time to VM problems. - A new VM module for multi-step (CVD, Etching and Litography) line is proposed, where Multi-Task Learning techniques have been employed. - A new Machine Learning algorithm based on Kernel Methods for the estimation of scalar outputs from time series inputs is illustrated. - Run-to-Run control algorithms that employ both the presence of physical measures and statistical ones (coming from a VM system) is shown; this tool is based on IT elements. - A PdM module based on filtering and prediction techniques (Kalman Filter, Monte Carlo methods) is developed for the prediction of maintenance interventions in the Epitaxy process. - A PdM system based on Elastic Nets for the maintenance predictions in Ion Implantation tool is described. Several of the aforementioned works have been developed in collaborations with major European semiconductor companies in the framework of the European project UE FP7 IMPROVE (Implementing Manufacturing science solutions to increase equiPment pROductiVity and fab pErformance); such collaborations will be specified during the thesis, underlying the practical aspects of the implementation of the proposed technologies in a real industrial environment

    deep learning based production forecasting in manufacturing a packaging equipment case study

    Get PDF
    Abstract We propose a Deep Learning (DL)-based approach for production performance forecasting in fresh products packaging. On the one hand, this is a very demanding scenario where high throughput is mandatory; on the other, due to strict hygiene requirements, unexpected downtime caused by packaging machines can lead to huge product waste. Thus, our aim is predicting future values of key performance indexes such as Machine Mechanical Efficiency (MME) and Overall Equipment Effectiveness (OEE). We address this problem by leveraging DL-based approaches and historical production performance data related to measurements, warnings and alarms. Different architectures and prediction horizons are analyzed and compared to identify the most robust and effective solutions. We provide experimental results on a real industrial case, showing advantages with respect to current policies implemented by the industrial partner both in terms of forecasting accuracy and maintenance costs. The proposed architecture is shown to be effective on a real case study and it enables the development of predictive services in the area of Predictive Maintenance and Quality Monitoring for packaging equipment providers

    Development of a flexible and modular metrology system for measuring complex surfaces

    Get PDF
    The demand for customised optical devices is increasing tremendously. Such optical devices do not employ traditional designs like planar, spherical, or even aspherical shapes. Instead, modern lenses exhibit free-form surfaces with a large variety of gradients in all directions. Highly accurate and repeatable measurement of such lens surfaces represents a considerable challenge; therefore there is a pressing need to both improve the metrology systems used in the optical industry and to develop new generations of high-performance metrology systems that employ innovative measurement techniques.Workshops need fast measurement solutions for the rough surfaces produced in the early stages of a lens typical production chain. The last steps produce very smooth surfaces, usually ideally suited to interferometers. However, interferometers are physically not suited to the measurement of strong aspheres or free-form shaped objects. Therefore, research was undertaken to investigate a metrology solution applicable to all common surface types and roughness grades at any stage of the production chain.This PhD research presents a novel approach for applying the principle of a spherical coordinate measurement machine (SCMM) to lens metrology. SCMMs require the precise and repeatable alignment of all axes. Therefore, research was performed to investigate a novel method for generic axes alignment without the need for external tools. This method, with the enhanced SCMM approach, was then combined with research into suitable multi-sensor measurement modes, in order to adequately address the needs of all stages in the production chain. Coordinate measurement machines are subject to the influence of errors. Therefore, research was conducted to develop a novel user-interface and a patented device to analyse and compensate for errors of the applied rotational axes and the 3D-Scale. The mathematical models presented, enable a simple transfer to other types of SCMMs. Also, the researched processes, software tools and mechatronic devices may be generically adopted to other machines applying rotational axes. Therefore, in addition to providing advanced capabilities for high-accuracy measurement of lenses with complex morphologies; the results of this research and the new approaches developed may be employed with SCMMs more generally, in a wide range of industrial sectors

    Digital twin-enabled collaborative data management for metal additive manufacturing systems

    Get PDF
    Metal Additive Manufacturing (AM) has been attracting a continuously increasing attention due to its great advantages compared to traditional subtractive manufacturing in terms of higher design flexibility, shorter development time, lower tooling cost, and fewer production wastes. However, the lack of process robustness, stability and repeatability caused by the unsolved complex relationships between material properties, product design, process parameters, process signatures, post AM processes and product quality has significantly impeded its broad acceptance in the industry. To facilitate efficient implementation of advanced data analytics in metal AM, which would support the development of intelligent process monitoring, control and optimisation, this paper proposes a novel Digital Twin (DT)-enabled collaborative data management framework for metal AM systems, where a Cloud DT communicates with distributed Edge DTs in different product lifecycle stages. A metal AM product data model that contains a comprehensive list of specific product lifecycle data is developed to support the collaborative data management. The feasibility and advantages of the proposed framework are validated through the practical implementation in a distributed metal AM system developed in the project MANUELA. A representative application scenario of cloud-based and deep learning-enabled metal AM layer defect analysis is also presented. The proposed DT-enabled collaborative data management has shown great potential in enhancing fundamental understanding of metal AM processes, developing simulation and prediction models, reducing development times and costs, and improving product quality and production efficiency
    • …
    corecore