11,182 research outputs found

    Glider: A GPU Library Driver for Improved System Security

    Full text link
    Legacy device drivers implement both device resource management and isolation. This results in a large code base with a wide high-level interface making the driver vulnerable to security attacks. This is particularly problematic for increasingly popular accelerators like GPUs that have large, complex drivers. We solve this problem with library drivers, a new driver architecture. A library driver implements resource management as an untrusted library in the application process address space, and implements isolation as a kernel module that is smaller and has a narrower lower-level interface (i.e., closer to hardware) than a legacy driver. We articulate a set of device and platform hardware properties that are required to retrofit a legacy driver into a library driver. To demonstrate the feasibility and superiority of library drivers, we present Glider, a library driver implementation for two GPUs of popular brands, Radeon and Intel. Glider reduces the TCB size and attack surface by about 35% and 84% respectively for a Radeon HD 6450 GPU and by about 38% and 90% respectively for an Intel Ivy Bridge GPU. Moreover, it incurs no performance cost. Indeed, Glider outperforms a legacy driver for applications requiring intensive interactions with the device driver, such as applications using the OpenGL immediate mode API

    Improved Architectures for Secure Intra-process Isolation

    Get PDF
    Intra-process memory isolation can improve security by enforcing least-privilege at a finer granularity than traditional operating system controls without the context-switch overhead associated with inter-process communication. Because the process has traditionally been a fundamental security boundary, assigning different levels of trust to components within a process is a fundamental change in secure systems design. However, so far there has been little research on the challenges of securely implementing intra-process isolation on top of existing operating system abstractions. We find that frequently-used assumptions in secure system design do not precisely hold under realistic conditions, and that these discrepancies lead to exploitable vulnerabilities. We evaluate two recently-proposed memory isolation systems and show that both are vulnerable to the same generic attacks that break their security model. We then extend a subset of these attacks by applying them to a fully-precise model of control-flow integrity, demonstrating a data-only attack that bypasses both static and dynamic control-flow integrity enforcement by overwriting executable code in-memory even under typical w^x assumptions. From these two results, we propose a set of kernel modifications called Xlock that systemically addresses weaknesses in memory permissions enforcement on Linux, bringing them into line with w^x assumptions. Finally, we present modifications to intra-process isolation systems that preserve efficient userspace component transitions while drastically reducing risk of accidental kernel mismanagement by modeling intra-process components as separate processes from the kernel\u27s perspective. Taken together, these mitigations represent a more robust architecture for efficient and secure intra-process isolation

    A virtualisation framework for embedded systems

    Get PDF

    Tangible user interfaces : past, present and future directions

    Get PDF
    In the last two decades, Tangible User Interfaces (TUIs) have emerged as a new interface type that interlinks the digital and physical worlds. Drawing upon users' knowledge and skills of interaction with the real non-digital world, TUIs show a potential to enhance the way in which people interact with and leverage digital information. However, TUI research is still in its infancy and extensive research is required in or- der to fully understand the implications of tangible user interfaces, to develop technologies that further bridge the digital and the physical, and to guide TUI design with empirical knowledge. This paper examines the existing body of work on Tangible User In- terfaces. We start by sketching the history of tangible user interfaces, examining the intellectual origins of this field. We then present TUIs in a broader context, survey application domains, and review frame- works and taxonomies. We also discuss conceptual foundations of TUIs including perspectives from cognitive sciences, phycology, and philoso- phy. Methods and technologies for designing, building, and evaluating TUIs are also addressed. Finally, we discuss the strengths and limita- tions of TUIs and chart directions for future research

    HILT : High-Level Thesaurus Project. Phase IV and Embedding Project Extension : Final Report

    Get PDF
    Ensuring that Higher Education (HE) and Further Education (FE) users of the JISC IE can find appropriate learning, research and information resources by subject search and browse in an environment where most national and institutional service providers - usually for very good local reasons - use different subject schemes to describe their resources is a major challenge facing the JISC domain (and, indeed, other domains beyond JISC). Encouraging the use of standard terminologies in some services (institutional repositories, for example) is a related challenge. Under the auspices of the HILT project, JISC has been investigating mechanisms to assist the community with this problem through a JISC Shared Infrastructure Service that would help optimise the value obtained from expenditure on content and services by facilitating subject-search-based resource sharing to benefit users in the learning and research communities. The project has been through a number of phases, with work from earlier phases reported, both in published work elsewhere, and in project reports (see the project website: http://hilt.cdlr.strath.ac.uk/). HILT Phase IV had two elements - the core project, whose focus was 'to research, investigate and develop pilot solutions for problems pertaining to cross-searching multi-subject scheme information environments, as well as providing a variety of other terminological searching aids', and a short extension to encompass the pilot embedding of routines to interact with HILT M2M services in the user interfaces of various information services serving the JISC community. Both elements contributed to the developments summarised in this report

    Exploring the Integration of Memory Management and Trusted Computing

    Get PDF
    This thesis addresses vulnerabilities in current Trusted Computing architecture by exploring a design for a better Trusted Platform Module (TPM); one that integrates more closely with the CPU\u27s Memory Management Unit (MMU). We establish that software-based attacks on trusted memory can be carried out undetectably by an adversary on current TCG/TPM implementations. We demonstrate that an attacker with sufficient privileges can compromise the integrity of a TPM-protected system by modifying critical loaded code and static data after measurement has taken place. More specifically, these attacks illustrate the Time Of Check vs. Time of Use (TOCTOU) class of attacks. We propose to enhance the MMU, enabling it to detect when memory containing trusted code or data is being maliciously modified at run-time. On detection, it should be able to notify the TPM of these modifications. We seek to use the concepts of selective memory immutability as a security tool to harden the MMU, which will result in a more robust TCG/TPM implementation. To substantiate our ideas for this proposed hardware feature, we designed and implemented a software prototype system, which employs the monitoring capabilities of the Xen virtual machine monitor. We performed a security evaluation of our prototype and validated that it can detect all our software-based TOCTOU attacks. We applied our prototype to verify the integrity of data associated with an application, as well as suggested and implemented ways to prevent unauthorized use of data by associating it with its owner process. Our performance evaluation reveals minimal overhead

    State of The Art and Hot Aspects in Cloud Data Storage Security

    Get PDF
    Along with the evolution of cloud computing and cloud storage towards matu- rity, researchers have analyzed an increasing range of cloud computing security aspects, data security being an important topic in this area. In this paper, we examine the state of the art in cloud storage security through an overview of selected peer reviewed publications. We address the question of defining cloud storage security and its different aspects, as well as enumerate the main vec- tors of attack on cloud storage. The reviewed papers present techniques for key management and controlled disclosure of encrypted data in cloud storage, while novel ideas regarding secure operations on encrypted data and methods for pro- tection of data in fully virtualized environments provide a glimpse of the toolbox available for securing cloud storage. Finally, new challenges such as emergent government regulation call for solutions to problems that did not receive enough attention in earlier stages of cloud computing, such as for example geographical location of data. The methods presented in the papers selected for this review represent only a small fraction of the wide research effort within cloud storage security. Nevertheless, they serve as an indication of the diversity of problems that are being addressed
    corecore