7,456 research outputs found

    An Algorithm for Network and Data-aware Placement of Multi-Tier Applications in Cloud Data Centers

    Full text link
    Today's Cloud applications are dominated by composite applications comprising multiple computing and data components with strong communication correlations among them. Although Cloud providers are deploying large number of computing and storage devices to address the ever increasing demand for computing and storage resources, network resource demands are emerging as one of the key areas of performance bottleneck. This paper addresses network-aware placement of virtual components (computing and data) of multi-tier applications in data centers and formally defines the placement as an optimization problem. The simultaneous placement of Virtual Machines and data blocks aims at reducing the network overhead of the data center network infrastructure. A greedy heuristic is proposed for the on-demand application components placement that localizes network traffic in the data center interconnect. Such optimization helps reducing communication overhead in upper layer network switches that will eventually reduce the overall traffic volume across the data center. This, in turn, will help reducing packet transmission delay, increasing network performance, and minimizing the energy consumption of network components. Experimental results demonstrate performance superiority of the proposed algorithm over other approaches where it outperforms the state-of-the-art network-aware application placement algorithm across all performance metrics by reducing the average network cost up to 67% and network usage at core switches up to 84%, as well as increasing the average number of application deployments up to 18%.Comment: Submitted for publication consideration for the Journal of Network and Computer Applications (JNCA). Total page: 28. Number of figures: 15 figure

    Load sharing for optimistic parallel simulations on multicore machines

    Get PDF
    Parallel Discrete Event Simulation (PDES) is based on the partitioning of the simulation model into distinct Logical Processes (LPs), each one modeling a portion of the entire system, which are allowed to execute simulation events concurrently. This allows exploiting parallel computing architectures to speedup model execution, and to make very large models tractable. In this article we cope with the optimistic approach to PDES, where LPs are allowed to concurrently process their events in a speculative fashion, and rollback/ recovery techniques are used to guarantee state consistency in case of causality violations along the speculative execution path. Particularly, we present an innovative load sharing approach targeted at optimizing resource usage for fruitful simulation work when running an optimistic PDES environment on top of multi-processor/multi-core machines. Beyond providing the load sharing model, we also define a load sharing oriented architectural scheme, based on a symmetric multi-threaded organization of the simulation platform. Finally, we present a real implementation of the load sharing architecture within the open source ROme OpTimistic Simulator (ROOT-Sim) package. Experimental data for an assessment of both viability and effectiveness of our proposal are presented as well. Copyright is held by author/owner(s)

    A Survey on Load Balancing Algorithms for VM Placement in Cloud Computing

    Get PDF
    The emergence of cloud computing based on virtualization technologies brings huge opportunities to host virtual resource at low cost without the need of owning any infrastructure. Virtualization technologies enable users to acquire, configure and be charged on pay-per-use basis. However, Cloud data centers mostly comprise heterogeneous commodity servers hosting multiple virtual machines (VMs) with potential various specifications and fluctuating resource usages, which may cause imbalanced resource utilization within servers that may lead to performance degradation and service level agreements (SLAs) violations. To achieve efficient scheduling, these challenges should be addressed and solved by using load balancing strategies, which have been proved to be NP-hard problem. From multiple perspectives, this work identifies the challenges and analyzes existing algorithms for allocating VMs to PMs in infrastructure Clouds, especially focuses on load balancing. A detailed classification targeting load balancing algorithms for VM placement in cloud data centers is investigated and the surveyed algorithms are classified according to the classification. The goal of this paper is to provide a comprehensive and comparative understanding of existing literature and aid researchers by providing an insight for potential future enhancements.Comment: 22 Pages, 4 Figures, 4 Tables, in pres
    • …
    corecore