426 research outputs found

    A Configurable Transport Layer for CAF

    Full text link
    The message-driven nature of actors lays a foundation for developing scalable and distributed software. While the actor itself has been thoroughly modeled, the message passing layer lacks a common definition. Properties and guarantees of message exchange often shift with implementations and contexts. This adds complexity to the development process, limits portability, and removes transparency from distributed actor systems. In this work, we examine actor communication, focusing on the implementation and runtime costs of reliable and ordered delivery. Both guarantees are often based on TCP for remote messaging, which mixes network transport with the semantics of messaging. However, the choice of transport may follow different constraints and is often governed by deployment. As a first step towards re-architecting actor-to-actor communication, we decouple the messaging guarantees from the transport protocol. We validate our approach by redesigning the network stack of the C++ Actor Framework (CAF) so that it allows to combine an arbitrary transport protocol with additional functions for remote messaging. An evaluation quantifies the cost of composability and the impact of individual layers on the entire stack

    Virtual machine scheduling in dedicated computing clusters

    Get PDF
    Time-critical applications process a continuous stream of input data and have to meet specific timing constraints. A common approach to ensure that such an application satisfies its constraints is over-provisioning: The application is deployed in a dedicated cluster environment with enough processing power to achieve the target performance for every specified data input rate. This approach comes with a drawback: At times of decreased data input rates, the cluster resources are not fully utilized. A typical use case is the HLT-Chain application that processes physics data at runtime of the ALICE experiment at CERN. From a perspective of cost and efficiency it is desirable to exploit temporarily unused cluster resources. Existing approaches aim for that goal by running additional applications. These approaches, however, a) lack in flexibility to dynamically grant the time-critical application the resources it needs, b) are insufficient for isolating the time-critical application from harmful side-effects introduced by additional applications or c) are not general because application-specific interfaces are used. In this thesis, a software framework is presented that allows to exploit unused resources in a dedicated cluster without harming a time-critical application. Additional applications are hosted in Virtual Machines (VMs) and unused cluster resources are allocated to these VMs at runtime. In order to avoid resource bottlenecks, the resource usage of VMs is dynamically modified according to the needs of the time-critical application. For this purpose, a number of previously not combined methods is used. On a global level, appropriate VM manipulations like hot migration, suspend/resume and start/stop are determined by an informed search heuristic and applied at runtime. Locally on cluster nodes, a feedback-controlled adaption of VM resource usage is carried out in a decentralized manner. The employment of this framework allows to increase a cluster’s usage by running additional applications, while at the same time preventing negative impact towards a time-critical application. This capability of the framework is shown for the HLT-Chain application: In an empirical evaluation the cluster CPU usage is increased from 49% to 79%, additional results are computed and no negative effect towards the HLT-Chain application are observed

    QoE on media deliveriy in 5G environments

    Get PDF
    231 p.5G expandirá las redes móviles con un mayor ancho de banda, menor latencia y la capacidad de proveer conectividad de forma masiva y sin fallos. Los usuarios de servicios multimedia esperan una experiencia de reproducción multimedia fluida que se adapte de forma dinámica a los intereses del usuario y a su contexto de movilidad. Sin embargo, la red, adoptando una posición neutral, no ayuda a fortalecer los parámetros que inciden en la calidad de experiencia. En consecuencia, las soluciones diseñadas para realizar un envío de tráfico multimedia de forma dinámica y eficiente cobran un especial interés. Para mejorar la calidad de la experiencia de servicios multimedia en entornos 5G la investigación llevada a cabo en esta tesis ha diseñado un sistema múltiple, basado en cuatro contribuciones.El primer mecanismo, SaW, crea una granja elástica de recursos de computación que ejecutan tareas de análisis multimedia. Los resultados confirman la competitividad de este enfoque respecto a granjas de servidores. El segundo mecanismo, LAMB-DASH, elige la calidad en el reproductor multimedia con un diseño que requiere una baja complejidad de procesamiento. Las pruebas concluyen su habilidad para mejorar la estabilidad, consistencia y uniformidad de la calidad de experiencia entre los clientes que comparten una celda de red. El tercer mecanismo, MEC4FAIR, explota las capacidades 5G de analizar métricas del envío de los diferentes flujos. Los resultados muestran cómo habilita al servicio a coordinar a los diferentes clientes en la celda para mejorar la calidad del servicio. El cuarto mecanismo, CogNet, sirve para provisionar recursos de red y configurar una topología capaz de conmutar una demanda estimada y garantizar unas cotas de calidad del servicio. En este caso, los resultados arrojan una mayor precisión cuando la demanda de un servicio es mayor

    QoE-Centric Control and Management of Multimedia Services in Software Defined and Virtualized Networks

    Get PDF
    Multimedia services consumption has increased tremendously since the deployment of 4G/LTE networks. Mobile video services (e.g., YouTube and Mobile TV) on smart devices are expected to continue to grow with the emergence and evolution of future networks such as 5G. The end user’s demand for services with better quality from service providers has triggered a trend towards Quality of Experience (QoE) - centric network management through efficient utilization of network resources. However, existing network technologies are either unable to adapt to diverse changing network conditions or limited in available resources. This has posed challenges to service providers for provisioning of QoE-centric multimedia services. New networking solutions such as Software Defined Networking (SDN) and Network Function Virtualization (NFV) can provide better solutions in terms of QoE control and management of multimedia services in emerging and future networks. The features of SDN, such as adaptability, programmability and cost-effectiveness make it suitable for bandwidth-intensive multimedia applications such as live video streaming, 3D/HD video and video gaming. However, the delivery of multimedia services over SDN/NFV networks to achieve optimized QoE, and the overall QoE-centric network resource management remain an open question especially in the advent development of future softwarized networks. The work in this thesis intends to investigate, design and develop novel approaches for QoE-centric control and management of multimedia services (with a focus on video streaming services) over software defined and virtualized networks. First, a video quality management scheme based on the traffic intensity under Dynamic Adaptive Video Streaming over HTTP (DASH) using SDN is developed. The proposed scheme can mitigate virtual port queue congestion which may cause buffering or stalling events during video streaming, thus, reducing the video quality. A QoE-driven resource allocation mechanism is designed and developed for improving the end user’s QoE for video streaming services. The aim of this approach is to find the best combination of network node functions that can provide an optimized QoE level to end-users through network node cooperation. Furthermore, a novel QoE-centric management scheme is proposed and developed, which utilizes Multipath TCP (MPTCP) and Segment Routing (SR) to enhance QoE for video streaming services over SDN/NFV-based networks. The goal of this strategy is to enable service providers to route network traffic through multiple disjointed bandwidth-satisfying paths and meet specific service QoE guarantees to the end-users. Extensive experiments demonstrated that the proposed schemes in this work improve the video quality significantly compared with the state-of-the- art approaches. The thesis further proposes the path protections and link failure-free MPTCP/SR-based architecture that increases survivability, resilience, availability and robustness of future networks. The proposed path protection and dynamic link recovery scheme achieves a minimum time to recover from a failed link and avoids link congestion in softwarized networks

    Performance-Aware Speculative Resource Oversubscription for Large-Scale Clusters

    Get PDF
    It is a long-standing challenge to achieve a high degree of resource utilization in cluster scheduling. Resource oversubscription has become a common practice in improving resource utilization and cost reduction. However, current centralized approaches to oversubscription suffer from the issue with resource mismatch and fail to take into account other performance requirements, e.g., tail latency. In this article we present ROSE, a new resource management platform capable of conducting performance-aware resource oversubscription. ROSE allows latency-sensitive long-running applications (LRAs) to co-exist with computation-intensive batch jobs. Instead of waiting for resource allocation to be confirmed by the centralized scheduler, job managers in ROSE can independently request to launch speculative tasks within specific machines according to their suitability for oversubscription. Node agents of those machines can however, avoid any excessive resource oversubscription by means of a mechanism for admission control using multi-resource threshold control and performance-aware resource throttle. Experiments show that in case of mixed co-location of batch jobs and latency-sensitive LRAs, the CPU utilization and the disk utilization can reach 56.34 and 43.49 percent, respectively, but the 95th percentile of read latency in YCSB workloads only increases by 5.4 percent against the case of executing the LRAs alone

    A survey of the European Open Science Cloud services for expanding the capacity and capabilities of multidisciplinary scientific applications

    Get PDF
    Open Science is a paradigm in which scientific data, procedures, tools and results are shared transparently and reused by society. The European Open Science Cloud (EOSC) initiative is an effort in Europe to provide an open, trusted, virtual and federated computing environment to execute scientific applications and store, share and reuse research data across borders and scientific disciplines. Additionally, scientific services are becoming increasingly data-intensive, not only in terms of computationally intensive tasks but also in terms of storage resources. To meet those resource demands, computing paradigms such as High-Performance Computing (HPC) and Cloud Computing are applied to e-science applications. However, adapting applications and services to these paradigms is a challenging task, commonly requiring a deep knowledge of the underlying technologies, which often constitutes a general barrier to its uptake by scientists. In this context, EOSC-Synergy, a collaborative project involving more than 20 institutions from eight European countries pooling their knowledge and experience to enhance EOSC’s capabilities and capacities, aims to bring EOSC closer to the scientific communities. This article provides a summary analysis of the adaptations made in the ten thematic services of EOSC-Synergy to embrace this paradigm. These services are grouped into four categories: Earth Observation, Environment, Biomedicine, and Astrophysics. The analysis will lead to the identification of commonalities, best practices and common requirements, regardless of the thematic area of the service. Experience gained from the thematic services can be transferred to new services for the adoption of the EOSC ecosystem framework. The article made several recommendations for the integration of thematic services in the EOSC ecosystem regarding Authentication and Authorization (federated regional or thematic solutions based on EduGAIN mainly), FAIR data and metadata preservation solutions (both at cataloguing and data preservation—such as EUDAT’s B2SHARE), cloud platform-agnostic resource management services (such as Infrastructure Manager) and workload management solutions.This work was supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 857647, EOSC-Synergy, European Open Science Cloud - Expanding Capacities by building Capabilities. Moreover, this work is partially funded by grant No 2015/24461-2, São Paulo Research Foundation (FAPESP). Francisco Brasileiro is a CNPq/Brazil researcher (grant 308027/2020-5).Peer Reviewed"Article signat per 20 autors/es: Amanda Calatrava, Hernán Asorey, Jan Astalos, Alberto Azevedo, Francesco Benincasa, Ignacio Blanquer, Martin Bobak, Francisco Brasileiro, Laia Codó, Laura del Cano, Borja Esteban, Meritxell Ferret, Josef Handl, Tobias Kerzenmacher, Valentin Kozlov, Aleš Křenek, Ricardo Martins, Manuel Pavesio, Antonio Juan Rubio-Montero, Juan Sánchez-Ferrero "Postprint (published version
    corecore