35,220 research outputs found

    Towards enhancing laboratory education by the development and evaluation of the "TriLab" : a triple access mode (virtual, hands-on and remote) laboratory

    Get PDF
    This thesis contributes to the general body of knowledge of research into engineering education. The main scope of the thesis is on enhancing laboratory education. There are three main types of laboratory: virtual, hands-on and remote. The hands-on lab is the oldest and most commonly used medium for experiential education in undergraduate degrees of science and engineering. The literature review of laboratory education has shown that hands-on labs suffer from many disadvantages, which can be overcome by utilizing hybrid laboratory structures that incorporate virtual and/or remote modes. The investigation into enhanced laboratory education is achieved via implementing new technical and pedagogical models of conducting laboratories. The technical model incorporates three access modes (virtual, hands-on and remote) to the laboratory experience in one software package called the TriLab. The TriLab concept has been applied to the Process Control Lab at the Chemical Engineering Department of Loughborough University and has been implemented using LabVIEW. The Joomla web content management system was used to develop an online portal for disseminating the remote component of the TriLab resulting in the first remote lab portal of Loughborough University and one of the few available in the UK. A pedagogical model of laboratory education based on Kolb's experiential learning theory and by the utilization of the TriLab concept is proposed. The model is built on a hypothesis, which states that the poor learning outcomes of hands-on laboratory sessions can be associated with poor activation of the stages of Kolb's experiential learning cycle. It has been proposed that access to a virtual lab in a preparatory session will play a role in activating the stages of Kolb's cycle. To verify this, educational experimentation procedures were designed and applied to two groups, control and experimental. Measurements via pre- and post-lab tests, marks for the laboratory report and the final exam of the module have been performed. The statistical analysis of the measurements has supported the stated hypothesis and solution proposal. The proposed pedagogical model is one of the few that provide a way of conducting laboratory education based on constructivist educational theories. (Continues...).EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    An internet of laboratory things

    Get PDF
    By creating “an Internet of Laboratory Things” we have built a blend of real and virtual laboratory spaces that enables students to gain practical skills necessary for their professional science and engineering careers. All our students are distance learners. This provides them by default with the proving ground needed to develop their skills in remotely operating equipment, and collaborating with peers despite not being co-located. Our laboratories accommodate state of the art research grade equipment, as well as large-class sets of off-the-shelf work stations and bespoke teaching apparatus. Distance to the student is no object and the facilities are open all hours. This approach is essential for STEM qualifications requiring development of practical skills, with higher efficiency and greater accessibility than achievable in a solely residential programme

    Providing equivalent learning activities with software-based remote access laboratories

    Get PDF
    Laboratory-based learning activities are important components of engineering and surveying education and it is difficult to offering practical activities to distance education students. Remote Access Laboratory (RAL) systems are widely discussed as learning tools to offer students remote access to rigs or hardware. In some disciplines laboratory activities are purely software based and RAL systems can be used to provide access to software. As part of a larger study into the transferability of the remote laboratory concept to non-engineering disciplines this project evaluates the effectiveness of RAL based software activities in supporting student learning is investigated. In the discipline of Surveying and Spatial Science, RAL technology is used to provide Geographic Information System software access to distance students. The key research question discussed in this paper is whether RALbased software activities can address the same learning outcomes as face-to-face practical classes for software activities. Data was collected from students' discussion forums, teaching staff diaries and teaching staff interviews. The project demonstrates that students undertaking learning activities remotely achieve similar learning outcomes than student in practice classes using the same software. Ease of system access and usability are critical and the learning activity needs to be supported by comprehensive learning materials. This research provides a clear case in which the use of RAL technology has provided inclusive educational opportunities more efficiently and these general results are also applicable to experiments that involve physical hardware

    A Web-Based Distributed Virtual Educational Laboratory

    Get PDF
    Evolution and cost of measurement equipment, continuous training, and distance learning make it difficult to provide a complete set of updated workbenches to every student. For a preliminary familiarization and experimentation with instrumentation and measurement procedures, the use of virtual equipment is often considered more than sufficient from the didactic point of view, while the hands-on approach with real instrumentation and measurement systems still remains necessary to complete and refine the student's practical expertise. Creation and distribution of workbenches in networked computer laboratories therefore becomes attractive and convenient. This paper describes specification and design of a geographically distributed system based on commercially standard components

    Genuine lab experiences for students in resource constrained environments: The RealLab with integrated intelligent assessment.

    Get PDF
    Laboratory activities are indispensable for developing engineering skills. Computer Aided Learning (CAL) tools can be used to enhance laboratory learning in various ways, the latest approach being the virtual laboratory technique that emulates traditional laboratory processes. This new approach makes it possible to give students complete and genuine laboratory experiences in situations constrained by limited resources in the provision of laboratory facilities and infrastructure and/or where there is need for laboratory education, for large classes, with only one laboratory stand. This may especially be the case in countries in transition. Most existing virtual laboratories are not available for purchase. Where they are, they may not be cost friendly for resource constrained environments. Also, most do not integrate any form of assessment structure. In this paper, we present a very cost friendly virtual laboratory solution for genuine laboratory experiences in resource constrained environments, with integrated intelligent assessment
    • 

    corecore